Memory retrieval of fearful experiences is essential for survival, but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm, and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Memory retrieval of fearful experiences is essential for survival, but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm, and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.