Gene silencing through RNA interference (RNAi) has revolutionized the study of gene 98 function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) 99 RNAi has many times proven to be difficult to achieve. Most of the negative results have been 100 anecdotal and the positive experiments have not been collected in such a way that they are 101 possible to analyze. In this review, we have collected detailed data from more than 150 102 experiments including all to date published and many unpublished experiments. Despite a 103 large variation in the data, trends that are found are that RNAi is particularly successful in the 104 family Saturniidae and in genes involved in immunity. On the contrary, gene expression in 105 epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding 106 dsRNA requires high concentrations for success. Possible causes for the variability of success 107 in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further 108 investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the 109 innate immune response. Our general understanding of RNAi in Lepidoptera will be further 110 aided in the future as our public database at http://insectacentral.org/RNAi will continue to 111 gather information on RNAi experiments.
The midgut is a key tissue in insect science. Physiological roles include digestion and peritrophic membrane function, as well as being an important target for insecticides. We used an expressed sequence tag (EST) approach to identify candidate genes and gene families involved in these processes in the light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Two cDNA libraries were constructed from dissected midgut of third to fifth instar larvae. Clustering analysis of 6416 expressed sequence tags produced 1178 tentative unique genes comprising 725 tentative contigs and 453 singletons. The sequences show similar codon usage to sequences from other lepidopterans, a Kozak consensus sequence similar to Drosophila and single nucleotide polymorphisms (SNPs) were detected at a frequency of 1.35/kb. The identity of the most common Interpro families correlates well with major known functions of the midgut. Phylogenetic analysis was conducted on representative sequences from selected multigene families. Gene families include a broad range of digestive proteases, lipases and carbohydrases that appear to have degradative capacity against the major food components found in leaves, the diet of these larvae; and carboxylesterases, glutathione-S-transferases and cytochrome P450 monooxygenases, potentially involved in xenobiotic degradation. Two of the larger multigene families, serine proteases and lipases, expressed a high proportion of genes that are likely to be catalytically inactive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.