Learning appears to be ubiquitous among animals, as it plays a key role in many behaviors including foraging and reproduction. Although there is some genetic basis for differences in learning ability and memory retention, environment also plays an important role, as it does for any other trait. For example, adult animals maintained in enriched housing conditions learn faster and remember tasks for longer than animals maintained in impoverished conditions. Such plasticity in adult learning ability has often been linked to plasticity in the brain, and studies aimed at understanding the mechanisms, stimuli, and consequences of adult behavioral and brain plasticity are numerous. However, the role of experiences during post-embryonic development in shaping plasticity in adult learning ability and memory retention remain relatively unexplored. Using the house cricket (Acheta domesticus) as a model organism, we developed a protocol to allow the odor preference of a large number of crickets to be tested in a short period of time. We then used this new protocol to examine how enrichment or impoverishment at two developmental stages (either the last nymphal instar or young adult) affected adult memory. Our results show that regardless of nymphal rearing conditions, crickets that experienced an enriched rearing condition as young adults performed better on a memory task than individuals that experienced an impoverished condition. Older adult crickets (more than 1 week post adult molt) did not demonstrate differences in memory of the odor task, regardless of rearing condition as a young adult. Our results suggest that environmentally-induced plasticity in memory may be restricted to the young adult stage.
Prospects of global increases in extreme weather change provide incentive to examine how such change influences animal behavior, for example, behavior associated with resource use. In this study, we examined how oviposition behavior in a southern Arizona population of pipevine swallowtails (Battus philenor L.) responded to changes in their Aristolochia host resource and vegetative background caused by the North American monsoon system. Summer monsoon rains resulted in a flush of non-host vegetation and a more than doubling in rate of landings by host-searching females on non-host vegetation. Rates of discovery of the host species A. watsoni Woot. Standl. decreased by 50% after monsoon rains. Rains did not alter host density appreciably, but resulted in significant increases in host plant size and new growth, two indicators of host suitability for B. philenor larvae. After the rains, mean clutch size on individual host plants increased by a factor of 2.5; the mean proportion of host plants encountered on which a female laid eggs also increased significantly. Females were discriminating about the host plants on which they laid eggs after alightment; plants accepted for oviposition were larger, bore more new growth, and bore fewer larvae than rejected plants. Contrary to predictions from foraging theory, degree of discrimination did not change seasonally. Finally, the rate at which eggs were laid increased seasonally, suggesting that oviposition rates were limited more before monsoon rains by the relatively low quality of hosts than they were after the rains by the relatively low rate at which hosts were found. This latter result suggests that, while butterflies possess behavioral flexibility to respond to extreme weather change, such flexibility may have limits. In particular, expected increases in the severity and frequency of droughts may result in reduced oviposition rates, reductions that could have adverse demographic consequences.
Previously studied for its role in processing olfactory information in the antennal lobe, GABA also may shape development of the olfactory pathway, acting either through or on glial cells. Early in development, the dendrites of GABAergic neurons extend to the glial border that surrounds the nascent olfactory lobe neuropil. These neuropil glia express both GABAA and GABAB receptors, about half of the glia in acute cultures responded to GABA with small outward currents, and about a third responded with small transient increases in intracellular calcium. The neuronal classes that express GABA in vivo, the local interneurons and a subset of projection neurons, also do so in culture. Exposure to GABA in culture increased the size and complexity of local interneurons, but had no effect on glial morphology. The presence of glia alone did not affect neuronal morphology, but in the presence of both glia and GABA, the growth-enhancing effects of GABA on cultured antennal lobe neurons were eliminated. Contact between the glial cells and the neurons was not necessary. Operating in vivo, these antagonistic effects, one direct and one glia mediated, could help to sculpt the densely branched, tufted arbors that are characteristic of neurons innervating olfactory glomeruli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.