Continuous, daily, oral BIBW 2992 is safe and has durable antitumor activity. It is currently being evaluated in phase III trials.
Purpose: This phase I study was undertaken to define the maximum tolerated dose, safety, and pharmacokinetic profile of CP-751,871. Experimental Design: Using a rapid dose escalation design, patients with advanced nonhematologic malignancies were treated with CP-751,871 in four dose escalation cohorts. CP-751,871 was administered i.v. on day 1 of each 21-day cycle. Pharmacokinetic evaluation was done in all treatment cohorts during cycles 1and 4. Results: Twenty-four patients received 110 cycles at four dose levels. The maximum tolerated dose exceeded the maximal feasible dose of 20 mg/kg and, thus, was not identified. Treatment-related toxicities were generally mild. The most common adverse events were hyperglycemia, anorexia, nausea, elevated aspartate aminotransferase, elevated g-glutamyltransferase, diarrhea, hyperuracemia, and fatigue. At 20 mg/kg, 10 of 15 patients experienced stability of disease. Two of these patients experienced long-term stability. There were no objective responses. Pharmacokinetic analysis revealed a dose-dependent increase in CP-751,871 exposure and f2-fold accumulation on repeated dosing in 21-day cycles. Plasma concentrations of CP-751,871 attained were several log-fold greater than the biologically active concentration. Treatment with CP-751,871 increased serum insulin and human growth hormone levels, with modest increases in serum glucose levels. Conclusions: CP-751,871 has a favorable safety profile and was well tolerated when given in continuous cycles. At the maximal feasible dose of 20 mg/kg, there was a moderate accumulation in plasma exposure, and most of the treated patients experienced stability of disease.
The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.