The rhenium(v)oxo dimer {MeReO(edt)}2 (edt = 1,2-ethanedithiolate) is an effective catalyst for the oxygen atom transfer (OAT) reaction from pyridine oxide and picoline oxide to triphenylarsine (Ph3As) as oxygen acceptor. Kinetics measurements were carried out by the initial rate method because of the monomerization reaction of the pyridine product with the {MeReO(edt)}2 catalysts. The derived rate is R = k[Re][NO] (where NO is picoline oxide or pyridine oxide) and independent of the Ph3As concentration. The rate constant at room temperature in chloroform is k(PicNO) = 268.1 ± 3.5 L mol−1 s−1 and k(PyNO) = 155.3 ± 2.3 L mol−1 s−1. The analogue rhenium(v)oxo dimer {MeReO(pdt)}2 (pdt = 1,3-propanedithiolate) does not monomerize with pyridine. However, {MeReO(edt)}2 rapidly monomerizes with pyridine. Density functional theory study of the enthalpy of the monomerization reaction shows that the {MeReO(edt)}2 reaction with pyridine is more thermodynamically favoured than {MeReO(pdt)}2 and this is attributed to the higher angle strain on the {MeReO(edt)}2 bridging sulfur. The computational study of the proposed slow step shows that enthalpy of activation (ΔH‡) of ReV oxidation to ReVII is unchanged by varying the substituent on the pyridine oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.