BackgroundHaemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected individuals presents a substantial global disease burden. β-thalassaemia is characterised by the reduced synthesis (β+) or absence (βo) of the β-globin chains in the HbA molecule, resulting in accumulation of excess unbound α-globin chains that precipitate in erythroid precursors in the bone marrow and in the mature erythrocytes, leading to ineffective erythropoiesis and peripheral haemolysis. Approximately 1.5% of the global population are heterozygotes (carriers) of the β-thalassemias; there is a high incidence in populations from the Mediterranean basin, throughout the Middle East, the Indian subcontinent, Southeast Asia, and Melanesia to the Pacific Islands.AimThe principal aim of this paper is to review, from a historical standpoint, our knowledge about an ancient disease, the β-thalassemias, and in particular, when, how and in what way β-thalassemia spread worldwide to reach such high incidences in certain populations.ResultsMutations involving the β-globin gene are the most common cause of genetic disorders in humans. To date, more than 350 β-thalassaemia mutations have been reported. Considering the current distribution of β- thalassemia, the wide diversity of mutations and the small number of specific mutations in individual populations, it seems unlikely that β-thalassemia originated in a single place and time.ConclusionsVarious processes are known to determine the frequency of genetic disease in human populations. However, it is almost impossible to decide to what extent each process is responsible for the presence of a particular genetic disease. The wide spectrum of β-thalassemia mutations could well be explained by looking at their geographical distribution, the history of malaria, wars, invasions, mass migrations, consanguinity, and settlements. An analysis of the distribution of the molecular spectrum of haemoglobinopathies allows for the development and improvement of diagnostic tests and management of these disorders.
In patients with TM, uncontrolled iron overload has serious clinical consequences with considerable morbidity and mortality. Complications include liver damage, cardiac disease and endocrine dysfunction. Diabetes is an important complication of TM. The mechanisms of abnormal glucose homeostasis are complex and multifactorial. This review updates the current knowledge about glycemic abnormalities in TM patients and directs the attention to an early diagnosis and proper management.
It is a common knowledge that GH exhibits a large number of metabolic effects, involving lipid and glucose homeostasis. The aim of the study was to investigate the effect of one year GH therapy on metabolic parameters and adipokines in GH deficient (GHD) children. Sixteen prepubertal children (11 M and 5 F) with complete GHD (age range: 3.4-14.7 years) and 20 (13 M and 7 F) age and sex-matched healthy children (age range: 4.6-12.3 years) were studied. Blood was collected from patients before starting GH therapy (0.025 mg/kg/day) and one year later, and from healthy children to measure adiponectin, leptin, osteoprotegerin, resistin, interleukin (IL)-6, tumor necrosis factor (TNF)-α levels, and other glucose and lipid metabolism parameters. Adiponectin and resistin levels were significantly higher (49980 ng/ml vs. 14790 ng/ml and 11.0 pg/ml vs. 6.3, respectively) in GHD children before GH therapy than in controls. Serum IGF-I levels (p=0.0001) and height SDS (p<0.0001) significantly increased after 12 months' of GH therapy. There was a loss of body fat reflected by a significant decline in tricep (p=0.0003) and subscapular skinfold thickness SDS (p=0.0023). After 12 months, there was a significant rise in insulin (p=0.0052) and leptin levels (p=0.0048) and a significant decrease in resistin (p=0.0312) and TNF-α (p=0.0137). We observed that lipid and glucose metabolisms are only slightly affected in GHD children. Growth hormone replacement therapy affects some factors, such as leptin, resistin and fat mass, suggesting that also in children, GH treatment has a role in the regulation of factors secreted by adipose tissue.
IntroductionIGF-1 deficiency in TM patients in children and adolescents has been attributed to chronic anemia and hypoxia, chronic liver disease, iron overload and other associated endocrinopathies, e.g. growth hormone deficiency (GHD). Few data are available in the literature regarding adult TM patients and growth disorders. The aim of this study was to measure IGF-1 values and other clinical data in a large number of adult patients with TM to evaluate the possible relationships between them.Patients and MethodsA cohort of 120 adult patients with TM was studied for plasma levels of IGF-1. Plasma total IGF-1 was determined by chemiluminescent immunometric assay (CLIA) method. In eleven patients (3 females) the GH response during glucagon stimulation test (GST) was also evaluated.ResultsFifty percent of patients (33 males and 27 females) had IGF-1 levels <- 2 SDs below normative values for healthy subjects matched for age and sex. In these patients endocrine complications and elevations of aminotransferases (ALT) were more common compared to TM patients with IGF1 > -2SDs. In multivariate regression analyses, height, weight, BMI, serum ferritin, ALT, HCV serology and left ventricular ejection fraction (LVEF) were not significantly related to IGF-1, but a significant correlation was found in females between HCV-RNA positivity and IGF-1, ALT and serum ferritin. AGHD was diagnosed in 6 (4 males) out of 11 patients (54.5%) who had glucagon stimulation tests and in 5 out of 8 (62.5%) with IGF-1 <-2SD. The mean age of patients with GHD was 39.3 years (range: 25–49 years, median: 39 years) versus 35.8 years (range: 27–45 years, median: 37.5 years) in non-GHD patients. A positive correlation between GH peak after GST and IGF-1 level was found (r: 0.6409; p: < 0.05).ConclusionsIn 50% of TM patients the IGF-1 levels were 2SDs below average values for healthy individuals. IGF-1 deficiency was more common in TM patients with associated endocrine complications, and a significant correlation was found in HCV-RNA positive females among IGF-1, ALT, and serum ferritin. Further data in a larger group of patients are needed to confirm whether IGF-1 level <-2 SDs may be a potential criterion for additional studies in TM patients. This datum could avoid performing GH stimulation tests in the majority of them.
Aim:Chronic iron overload resulting from frequent transfusions, poor compliance to efficient chelation therapy and chronic liver disease is basically responsible for the most severe complications of thalassemia major (TM). Before conventional treatment, TM was entirely childhood disease with a very short survival. Today, survival improved to 40–50 years and becomes a prevalent disease of adulthood and in the near future it will be one of senility. Furthermore, clinical phenotype of TM is changing with age and appearance of severe complications from the heart and endocrine glands that require special health care from well-informed specialists.Objectives:The aims of our study were to: (1) Imprint the clinical profile of long-lived TM patients; (2) evaluate retrospectively the cumulative incidence of endocrine diseases; (3) identify potential risk factors; and (4) orient the physicians in the modified clinical phenotype and the relative patients' health needs.Design:A retrospective cross-sectional study followed from childhood to adulthood by the same physician in a tertiary thalassemia clinic.Participants:Forty-three long-lived TM patients (mean age: 50.3 ± 10.8 years; range: 45.8–59.5 years; 23 females) were studied.Patients and Methods:An extensive medical history, with detailed clinical and laboratory data, endocrine complications, and current treatments, was obtained.Results:The data indicate that 88.4% of adult TM patients suffered from at least one endocrine complication. The majority of patients developed endocrine complications in the second decade of life when serum ferritin level was very high (12/23 TM female and 8/20 TM male patients, the serum ferritin levels at the diagnosis were above 5.000 ng/ml).Conclusions:These data underline that endocrine and bone complications in adult TM patients are highly prevalent and necessitate close monitoring, treatment, and follow-up. Physicians' strategies to optimize chelation therapy include identifying patients who are at risk for developing organ damage, developing chelation plans, promoting compliance, and educating patients. Several clinical aspects remain to be elucidated such as growth and impairment of glucose tolerance in relation to hepatitis C virus infection. Furthermore, affordable worldwide-established long-term treatment protocols for hypogonadism and osteoporosis are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.