To mitigate global warming and energy shortage, integration of renewable energy generation sources, energy storage systems, and plug-in electric vehicles (PEVs) have been introduced in recent years. The application of electric vehicles (EV) in the smart grid has shown a significant option to reduce carbon emission. However, due to the limited battery capacity, managing the charging and discharging process of EV as a distributed power supply is a challenging task. Moreover, the unpredictable nature of renewable energy generation, uncertainties of plug-in electric vehicles associated parameters, energy prices, and the time-varying load create new challenges for the researchers and industries to maintain a stable operation of the power system. The EV battery charging management system plays a main role in coordinating the charging and discharging mechanism to efficiently realize a secure, efficient, and reliable power system. More recently, there has been an increasing interest in data-driven approaches in EV charging modeling. Consequently, researchers are looking to deploy model-free approaches for solving the EV charging management with uncertainties. Among many existing model-free approaches, Reinforcement Learning (RL) has been widely used for EV charging management. Unlike other machine learning approaches, the RL technique is based on maximizing the cumulative reward. This paper reviews the existing literature related to the RL-based framework, objectives, and architecture for the charging coordination strategies of electric vehicles in the power systems. In addition, the review paper presents a detailed comparative analysis of the techniques used for achieving different charging coordination objectives while satisfying multiple constraints. This paper also focuses on the application of RL in EV coordination for research and development of the cutting-edge optimized energy management system (EMS), which are applicable for EV charging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.