Exosomes, a subgroup of extracellular vesicles (EVs), have been recognized as important mediators of long distance intercellular communication and are involved in a diverse range of biological processes. Because of their ideal native structure and characteristics, exosomes are promising nanocarriers for clinical use. Exosomes are engineered at the cellular level under natural conditions, but successful exosome modification requires further exploration. The focus of this paper is to summarize passive and active loading approaches, as well as specific exosome modifications and examples of the delivery of therapeutic and imaging molecules. Examples of exosomes derived from a variety of biological origins are also provided. The biocompatible characteristics of exosomes, with suitable modifications, can increase the stability and efficacy of imaging probes and therapeutics while enhancing cellular uptake. Challenges in clinical translation of exosome-based platforms from different cell sources and the advantages of each are also reviewed and discussed.
The COPI vesicle coat and proteins of the 14-3-3 family recognize arginine-based ER localization signals on multimeric membrane proteins. The equilibrium between these two competing reactions depends on the valency and spatial arrangement of the signal-containing tails. We propose a mechanism in which 14-3-3 bound to the correctly assembled multimer mediates release of the complex from the ER.
Autophagy is a conserved lysosomal degradation process that has important roles in both normal human physiology and disease. However, the function of autophagy in bone homeostasis is not well understood. Here, we report that autophagy is activated during osteoblast differentiation. Ablation of FIP200 (focal adhesion kinase family interacting protein of 200 kD), an essential component of mammalian autophagy, led to multiple autophagic defects in osteoblasts including aberrantly increased p62 expression, deficient LC3-II conversion, defective autophagy flux, absence of GFP-LC3 puncta in FIP200-null osteoblasts expressing transgenic GFP-LC3 and absence of autophagosome-like structures by electron microscope examination. Osteoblast-specific deletion of FIP200 led to osteopenia in mice. Histomorphometric analysis revealed that the osteopenia was due to cell-autonomous effects of FIP200 deletion on osteoblasts. FIP200 deletion led to defective osteoblast terminal differentiation in both primary bone marrow and calvarial osteoblasts in vitro. Interestingly, both proliferation and differentiation were not adversely affected by FIP200 deletion in early cultures. However, FIP200 deletion led to defective osteoblast nodule formation after initial proliferation and differentiation. Furthermore, treatment with autophagy inhibitors recapitulated the effects of FIP200 deletion on osteoblast differentiation. Taken together, these data identify FIP200 as an important regulator of bone development and reveal a novel role of autophagy in osteoblast function through its positive role in supporting osteoblast nodule formation and differentiation.
Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.