Environmental factors, such as humidity, precipitation, and temperature, have significant impacts on the spread of the new strain coronavirus COVID-19 to humans. In this paper, we use a stochastic epidemic SIRC model, with cross-immune class and time-delay in transmission terms, for the spread of COVID-19. We analyze the model and prove the existence and uniqueness of positive global solution. We deduce the basic reproduction number ${\mathcal{R}}_{0}^{s}$
R
0
s
for the stochastic model which is smaller than ${\mathcal{R}}_{0}$
R
0
of the corresponding deterministic model. Sufficient conditions that guarantee the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov function, and conditions for the extinction of the disease are obtained. Our findings show that white noise plays an important part in controlling the spread of the disease; When the white noise is relatively large, the infectious diseases will become extinct; Re-infection and periodic outbreaks can occur due to the existence of feedback time-delay (or memory) in the transmission terms.
Public health science is increasingly focusing on understanding how COVID-19 spreads among humans. For the dynamics of COVID-19, we propose a stochastic epidemic model, with time-delays, Susceptible-Infected-Asymptomatic-Quarantined-Recovered (SIAQR). One global positive solution exists with probability one in the model. As a threshold condition of persistence and existence of an ergodic stationary distribution, we deduce a generalized stochastic threshold
. To estimate the percentages of people who must be vaccinated to achieve herd immunity, least-squares approaches were used to estimate
from real observations in the UAE. Our results suggest that when
, a proportion
of the population needs to be immunized/vaccinated during the pandemic wave. Numerical simulations show that the proposed stochastic delay differential model is consistent with the physical sensitivity and fluctuation of the real observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.