Thionins are plant antimicrobial peptides with antibacterial and antifungal activities. Thionin Thi2.1 cDNA from Arabidopsis thaliana was expressed in BVE-E6E7 bovine endothelial cell line and its activity was evaluated against Escherichia coli, Staphylococcus aureus, Candida albicans and different mammal cell lines. Total protein (2.5 microg) from conditioned medium (CM) of clone EC-Thi2.1 inhibited the growth of E. coli, S. aureus (>90%) and C. albicans strains (>80%) in relation to the CM from control cells. Also, CM of EC-Thi2.1 inhibited the viability of several transformed and normal mammal cell lines (38-95%). These results suggest that thionin Thi2.1 is an antimicrobial peptide that could be use in the treatment of mammalian infectious diseases.
Fifteen (15) backyard farms were investigated to determine the antimicrobial susceptibility and invasion ability of S. aureus isolates from cows with subclinical mastitis in México. A total of 106 cows were sampled and 31 S. aureus isolates were recovered. S. aureus isolates were resistant to penicillin class antibiotics and susceptible to gentamicin and cetyltrimethylammonium bromide. STA9 and STA13 isolates were resistant to erythromycin (MIC > 25 microg/ml) and lincomycin (STA13, MIC > 25 microg/ml; STA9, MIC > 100 microg/ml). STA9 isolate harbors the erm(B) and msr(A) genes, whereas STA13 isolate harbors the erm(C) gene. STA9 and STA13 isolates contains the lnu(A) gene. Only 5 isolates (STA11, STA13, STA14, STA15 and STA21) were able to internalize in bovine mammary epithelial cells. These results indicate that S. aureus isolates from dairy backyard farms showed differences in the antimicrobial susceptibility patterns and invasion ability in bovine mammary epithelial cells. This kind of evaluations should be performed in different dairy regions, since resistance patterns and isolate diversity vary on a per-region basis.
Background:The actions of plant antimicrobial peptides (PAP) against intracellular pathogens are poorly known. It has been reported that wheat puroindolines show antibacterial activity against Staphylococcus epidermidis endocyted by macrophages. In this work, we evaluated the intracellular antimicrobial activity of PAP γ-thionin and thionin Thi2.1 produced by bovine endothelial cells against intracellular Staphylococcus aureus and Candida albicans. We used three host-pathogen models: 1) bovine mammary epithelial cells (BMEC)-S. aureus, 2) bovine endothelial cells (BEC)-S. aureus and 3) BEC-C. albicans, and evaluated the effect of conditioned media from BEC producers of PAP (γ-thionin and thionin Thi2.1). Results: In the first model, conditioned medium (CM) containing Thi2.1 completely inhibited S. aureus intracellular after 24 hrs treatment. In the second model, CM from BEC containing γ-thionin has a better effect killing intracellular S. aureus for 12-24 hrs incubations than CM from endothelial cells producers of Thi2.1; this was related with an increase of nitric oxide production (~2 times) in BEC infected and treated for 12 hrs with CM containing γ-thionin, which negatively correlates with bacterial viability. In the third model, CM containing Thi2.1 showed a more potent intracellular fungicidal activity (~85% of inhibition) at 24 hrs treatment than CM containing γ-thionin (~35% of inhibition). Conclusions: This work shows new effects of PAP to control intracellular bacterial or fungal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.