Modern video games are rapidly growing in size and scale, and to create rich and interesting environments, a large amount of content is needed. As a consequence, often several thousands of detailed 3D assets are used to create a single scene. As each asset's polygon mesh can contain millions of polygons, the number of polygons that need to be drawn every frame may exceed several billions. Therefore, the computational resources often limit how many detailed objects that can be displayed in a scene. To push this limit and to optimize performance one can reduce the polygon count of the assets when possible. Basically, the idea is that an object at farther distance from the capturing camera, consequently with relatively smaller screen size, its polygon count may be reduced without affecting the perceived quality. Level of Detail (LOD) refers to the complexity level of a 3D model representation. The process of removing complexity is often called LOD reduction and can be done automatically with an algorithm or by hand by artists. However, this process may lead to deterioration of the visual quality if the different LODs differ significantly, or if LOD reduction transition is not seamless. Today the validation of these results is mainly done manually requiring an expert to visually inspect the results. However, this process is slow, mundane, and therefore prone to error. Herein we propose a method to automate this process based on the use of deep convolutional networks. We report promising results and envision that this method can be used to automate the process of LOD reduction testing and validation.
Figure 1: System overview. During training, two cVAEs are used to encode and generate facial and tongue mesh animations conditioned on speech. During inference, fixed latent vectors are used by the decoders to generate mesh animation sequences, that are then transformed into rig space via models approximating the inverse rig function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.