Microlocal analysis provides deep insight into singularity structures and is often crucial for solving inverse problems, predominately, in imaging sciences. Of particular importance is the analysis of wavefront sets and the correct extraction of those. In this paper, we introduce the first algorithmic approach to extract the wavefront set of images, which combines data-based and model-based methods. Based on a celebrated property of the shearlet transform to unravel information on the wavefront set, we extract the wavefront set of an image by first applying a discrete shearlet transform and then feeding local patches of this transform to a deep convolutional neural network trained on labeled data. The resulting algorithm outperforms all competing algorithms in edge-orientation and ramp-orientation detection.
Semantic edge detection has recently gained a lot of attention as an image-processing task, mainly because of its wide range of real-world applications. This is based on the fact that edges in images contain most of the semantic information. Semantic edge detection involves two tasks, namely pure edge detection and edge classification. Those are in fact fundamentally distinct in terms of the level of abstraction that each task requires. This fact is known as the distracted supervision paradox and limits the possible performance of a supervised model in semantic edge detection. In this work, we will present a novel hybrid method that is based on a combination of the model-based concept of shearlets, which provides probably optimally sparse approximations of a model class of images, and the data-driven method of a suitably designed convolutional neural network. We show that it avoids the distracted supervision paradox and achieves high performance in semantic edge detection. In addition, our approach requires significantly fewer parameters than a pure data-driven approach. Finally, we present several applications such as tomographic reconstruction and show that our approach significantly outperforms former methods, thereby also indicating the value of such hybrid methods for biomedical imaging.
We present a deep learning-based algorithm to jointly solve a reconstruction problem and a wavefront set extraction problem in tomographic imaging. The algorithm is based on a recently developed digital wavefront set extractor as well as the well-known microlocal canonical relation for the Radon transform. We use the wavefront set information about x-ray data to improve the reconstruction by requiring that the underlying neural networks simultaneously extract the correct ground truth wavefront set and ground truth image. As a necessary theoretical step, we identify the digital microlocal canonical relations for deep convolutional residual neural networks. We find strong numerical evidence for the effectiveness of this approach.
The shearlet transform from applied harmonic analysis is currently the state of the art when analyzing multidimensional signals with anisotropic singularities. Its optimal sparse approximation properties and its faithful digitalization allow shearlets to be applied to different problems from imaging science, such as image denoising, image inpainting, and singularities detection. The shearlet transform has also be successfully utilized, for instance, as a feature extractor. As such it has been shown to be well suited for image preprocessing in combination with data-driven methods such as deep neural networks. This requires in particular an implementation of the shearlet transform in the current deep learning frameworks, such as TensorFlow. With this motivation we developed a tensor shearlet transform aiming to provide a faithful TensorFlow implementation. In addition to its usability in predictive models, we also observed an significant improvement in the performance of the transform, with a running time of almost 40 times the previous state-of-the-art implementation. In this paper, we will also present several numerical experiments such as image denoising and inpainting, where the TensorFlow version can be shown to outperform previous libraries as well as the learned primal-dual reconstruction method for low dose computed tomography in running time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.