The use of solar thermal power plants is considered a cost-effective alternative to produce renewable energy. Unlike other energy installations, in this type of plants the transfer and storage of energy has been solved by using molten salts. These salts run between two tanks through the steam generation system that feeds the turbine. Although the use of salts as a heat transfer fluid is considered an adequate solution, they are not without problems. One of them is the formation of blockages in the pipes due to a partial solidification of the salt, which leads to the shutdown of the installation, with the consequent economic losses. Fast location of these blockages in a minimally intrusive way is the objective pursued in this work. The method to achieve this is based on the use of a new magnetostrictive sensor that simplifies previous designs.
In solar thermal plants, the use of molten salt as a heat transfer fluid is an advantageous alternative, although it has some disadvantages such as the formation of salt plugs in the pipes due to possible stratification of the salt or its solidification. The aim of this study was to implement an electromagnetic acoustic transducer (EMAT) not only capable of identifying the position of the plug, but also of determining whether the plug blocks the entire conductive surface or, on the contrary, is partial, allowing the fluid to pass through a smaller section. The proposed transducer is intended to be minimally invasive, allowing it to be used in the same way as a temperature probe. To do so, it creates torsional waves in the pipe, which are then used for a combination of measurements: pulse-echo and attenuation of the acoustic waves. Two materials with different densities (silicone and cement) were used in the tests carried out, which made it possible to check that for a given size of blockage, it is possible to identify the type of material from which it is formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.