Precise, analogue regulation of gene expression is critical for cellular function in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity. Here we report on a method for precise control of gene expression levels in mammalian cells using engineered microRNA response elements (MREs). First, we measure the efficacy of thousands of synthetic MRE variants under the control of an endogenous microRNA by high-throughput sequencing. Guided by this data, we establish a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to precisely control the expression of user-specified genes. We apply this technology to tune the T-cell co-inhibitory receptor PD-1 and to explore how antigen expression influences T-cell activation and tumour growth. Finally, we employ CRISPR/Cas9 mediated homology directed repair to introduce miSFITs into the BRCA1 3′UTR, demonstrating that this versatile tool can be used to tune endogenous genes.
Introduction
Morquio A syndrome (mucopolysaccharidosis type IVA, MPS IVA) is one of the lysosomal storage diseases and is caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Deficiency of this enzyme leads to accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate (C6S). The majority of KS is produced by chondrocytes, and therefore, the undegraded substrates accumulate mainly in cells and extracelluar matrix (ECM) of cartilage. This has a direct impact on cartilage and bone development, leading to systemic skeletal dysplasia. In patients with Morquio A, cartilage cells are vacuolated, and this results in abnormal chondrogenesis and/or endochondral ossification.
Areas covered
This article describes the advanced therapies of Morquio A, focused on enzyme replacement therapy (ERT) and gene therapy to deliver the drug to avascular bone lesions. ERT and gene therapies for other types of MPS are also discussed, which provide therapeutic efficacy to bone lesions.
Expert opinion
ERT, gene therapy and hematopietic stem therapy are clinically and/or experimentally conducted. However, there is no effective curative therapy for bone lesion to date. One of the limitations for Morquio A therapy is that targeting avascular cartilage tissues remains an unmet challenge. ERT or gene therapy with bone-targeting system will improve the bone pathology and skeletal manifestations more efficiently.
Spatial/temporal control of Cas9 guide RNA expression could considerably expand the utility of CRISPR-based technologies. Current approaches based on tRNA processing offer a promising strategy but suffer from high background. Here, to address this limitation, we present a screening platform which allows simultaneous measurements of the promoter strength, 5′, and 3′ processing efficiencies across a library of tRNA variants. This analysis reveals that the sequence determinants underlying these activities, while overlapping, are dissociable. Rational design based on the ensuing principles allowed us to engineer an improved tRNA scaffold that enables highly specific guide RNA production from a Pol-II promoter. When benchmarked against other reported systems this tRNA scaffold is superior to most alternatives, and is equivalent in function to an optimized version of the Csy4-based guide RNA release system. The results and methods described in this manuscript enable avenues of research both in genome engineering and basic tRNA biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.