Background: Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system.
Riedl's concept of burden neatly links development and evolution by ascertaining that structures that show a high degree of developmental co-dependencies with other structures are more constrained in evolution. The human skull can be precisely modeled as an articulated complex system of bones connected by sutures, forming a network of structural co-dependencies. We present a quantitative analysis of the morphological integration, modularity, and hierarchical organization of this human skull network model. Our overall results show that the human skull is a small-world network, with two well-delimited connectivity modules: one facial organized around the ethmoid bone, and one cranial organized around the sphenoid bone. Geometric morphometrics further support this two-module division, stressing the direct relationship between the developmental information enclosed in connectivity patterns and skull shape. Whereas the facial module shows a hierarchy of clustered blocks of bones, the bones of the cranial modules show a regular pattern of connections. We analyze the significance of these arrangements by hypothesizing specific structural roles for the most important bones involved in the formation of both modules, in the context of Riedl's burden. We conclude that it is the morphological integration of each group of bones that defines the semi-hierarchical organization of the human skull, reflecting fundamental differences in the ontogenetic patterns of growth and the structural constraints that generate each module. Our study also demonstrates the adequacy of network analysis as an innovative tool to understand the morphological complexity of anatomical systems.
Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.