Evaluating and tracking wound size is a fundamental metric for the wound assessment process. Good location and size estimates can enable proper diagnosis and effective treatment. Traditionally, laboratory wound healing studies include a collection of images at uniform time intervals exhibiting the wounded area and the healing process in the test animal, often a mouse. These images are then manually observed to determine key metrics —such as wound size progress— relevant to the study. However, this task is a time-consuming and laborious process. In addition, defining the wound edge could be subjective and can vary from one individual to another even among experts. Furthermore, as our understanding of the healing process grows, so does our need to efficiently and accurately track these key factors for high throughput (e.g., over large-scale and long-term experiments). Thus, in this study, we develop a deep learning-based image analysis pipeline that aims to intake non-uniform wound images and extract relevant information such as the location of interest, wound only image crops, and wound periphery size over-time metrics. In particular, our work focuses on images of wounded laboratory mice that are used widely for translationally relevant wound studies and leverages a commonly used ring-shaped splint present in most images to predict wound size. We apply the method to a dataset that was never meant to be quantified and, thus, presents many visual challenges. Additionally, the data set was not meant for training deep learning models and so is relatively small in size with only 256 images. We compare results to that of expert measurements and demonstrate preservation of information relevant to predicting wound closure despite variability from machine-to-expert and even expert-to-expert. The proposed system resulted in high fidelity results on unseen data with minimal human intervention. Furthermore, the pipeline estimates acceptable wound sizes when less than 50% of the images are missing reference objects.
Evaluating and tracking wound size is a fundamental metric for the wound assessment process. Good location and size estimates can enable proper diagnosis and effective treatment. Traditionally, laboratory wound healing studies include a collection of images at uniform time intervals exhibiting the wounded area and the healing process in the test animal, often a mouse. These images are then manually observed to determine key metrics—such as wound size progress—relevant to the study. However, this task is a time-consuming and laborious process. In addition, defining the wound edge could be subjective and can vary from one individual to another even among experts. Furthermore, as our understanding of the healing process grows, so does our need to efficiently and accurately track these key factors for high throughput (e.g., over large-scale and longterm experiments). Thus, in this study, we develop a deep learning-based image analysis pipeline that aims to intake non-uniform wound images and extract relevant information such as the location of interest, wound only image crops, and wound periphery size over-time metrics. Our work focuses on images of wounded laboratory mice that are used widely for translationally relevant wound studies. We compare results to that of expert measurements and demonstrate preservation of information relevant to predicting wound closure despite variability from machine-to-expert and even expert-to-expert. The proposed system resulted in high fidelity results on unseen data with minimal human intervention.Author summaryKnowledge of the wound size changes over-time allows us to observe important insights such as rate of closure, time to closure, and expansion events, which are key indicators for predicting healing status. To better perform wound measurements it is essential to utilize a technique that returns accurate and consistent results every time. Over the last years, collecting wound images is becoming easier and more popular as digital cameras and smartphones are more accessible. Commonly, scientists/clinicians trace the wound in these images manually to observe changes in the wound, which is normally a slow and labor-intensive process and also requires a trained eye. The clinical goal is to more efficiently and effectively treat wounds by employing easy to use and precise wound measurement techniques. Therefore, the objective should be devising automatic and precise wound measurement tools to be used for wound assessment. To this end, we leveraged a combination of various state-of-the-art computer vision and machine learning-based methods for developing a versatile and automatic wound assessment tool. We applied this tool to analyze the images of wound inflicted lab mice and showed that our developed tool automated the overall wound measurement process, therefore, resulting in high fidelity results without significant human intervention. Furthermore, we compared results to two expert measurements. We found variability in measurement even across experts further validating the need for a consistent approach. However, qualitative behavior, which is most important for predicting wound closure, is preserved.
Identifying, tracking, and predicting wound heal-stage progression is a fundamental task towards proper diagnosis, effective treatment, facilitating healing, and reducing pain. Traditionally, a medical expert might observe a wound to determine the current healing state and recommend treatment. However, sourcing experts who can produce such a diagnosis solely from visual indicators can be difficult, time-consuming and expensive. In addition, lesions may take several weeks to undergo the healing process, demanding resources to monitor and diagnose continually. Automating this task can be challenging; datasets that follow wound progression from onset to maturation are small, rare, and often collected without computer vision in mind. To tackle these challenges, we introduce a self-supervised learning scheme composed of (a) learning embeddings of wound's temporal dynamics, (b) clustering for automatic stage discovery, and (c) fine-tuned classification. The proposed self-supervised and flexible learning framework is biologically inspired and trained on a small dataset with zero human labeling. The HealNet framework achieved high pre-text and downstream classification accuracy; when evaluated on held-out test data, HealNet achieved 97.7% pre-text accuracy and 90.62% heal-stage classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.