Since the 1863 discovery of a new green hemoglobin derivative called "sulfhemoglobin", the nature of the characteristic 618 nm absorption band has been the subject of several hypotheses. The experimental spectra are a function of the observation time and interplay between two major sulfheme isomer concentrations (a three- and five-membered ring adduct), with the latter being the dominant isomer at longer times. Thus, time-dependent density functional theory (TDDFT) was used to calculate the sulfheme excited states and visualize the highest occupied molecular orbitals (HOMOs) and lowest unoccupied MOs (LUMOs) of both isomers in order to interpret the transitions between them. These two isomers have distinguishable a and a HOMO energies. Formation of the three-membered ring S isomeric structure decreases the energy of the HOMO a and a orbitals compared to the unmodified heme due to the electron-withdrawing, sulfur-containing, three-membered ring. Conversely, formation of the S isomeric structure decreases the energy of the HOMO a and a orbitals due to the electron-withdrawing, sulfur-containing, five-membered ring. The calculations reveal that the absorption spectrum within the 700 nm region arises from a mixture of MOs but can be characterized as π to π* transitions, while the 600 nm region is characterized by π to d (d , d) transitions having components of a deoxy-like derivative.
Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H2S to enter the solvent-excluded active site through a hydrophobic channel to ultimately form a hydrogen bond with H2O2 bound to Fe(III). Proton transfer from H2O2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H2S to the Fe(III)-H2O2 complex, results in homolytic cleavage of the O-O and S-H bonds to form a reactive thiyl radical (HS(•)), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS(•) to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer NB-Fe(III) bonds compared with other pyrrole nitrogen-Fe(III) bonds, which would lead to decreased oxygen binding. Overall, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H2S on cell signaling and reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.