Molecules that can be used to deliver a controlled amount of carbon monoxide (CO) have the potential to facilitate investigations into the roles of this gaseous molecule in biology and advance therapeutic treatments. This has led to the development of light-induced CO-releasing molecules (photoCORMs). A goal in this field of research is the development of molecules that exhibit a combination of controlled CO release, favorable biological properties (e.g., low toxicity and trackability in cells), and structural tunability to affect CO release. Herein, we report a new biologically-inspired organic photoCORM motif that exhibits several features that are desirable in a next-generation photoCORM. We show that 3-hydroxyflavone-based compounds are easily synthesized and modified to impart changes in absorption features and quantum yield for CO release, exhibit low toxicity, are trackable in cells, and can exhibit both O2-dependent and -independent CO release reactivity.
Molecular structures capable of intracellular information processing that couple responses from biomarker signals to the release of drug molecules represent intelligent delivery systems. Herein we report a chemophotonically driven, sense-of-logic carbon monoxide-releasing molecule (SL-photoCORM). This extended flavonol motif operates via an AND logic gate by first sensing the cellular environment via detection of thiols and then releasing CO when triggered with visible light and O. Overall, this approach couples the detection of a cellular redox biomarker with the ability to release a small-molecule gasotransmitter known to trigger pathways involved in pro- and anti-inflammatory effects in a dose-dependent manner. Significantly, the fluorescence properties of the flavonol-based SL-photoCORM produce a series of chemophotonic input responses via two photochromatic switches (blue-to-green and green-to-colorless), leading to trackability and spatiotemporal control of CO release. Examination of the O requirements of the CO release step revealed that the SL-photoCORM is suitable for use under conditions of variable cellular levels of O. These combined properties within a single-molecular framework advance the field of CO-releasing molecules by providing feedback on the diversity and complexity of the cellular environment prior to CO release.
While interactions between carbon monoxide (CO) and mitochondria have been previously studied, the methods used to deliver CO (gas or CO-releasing metal carbonyl compounds) lack subcellular targeting and/or controlled delivery. Thus, the effective concentration needed to produce changes in mitochondrial bioenergetics is yet to be fully defined. To evaluate the influence of mitochondrial-targeted versus intracellularly released CO on mitochondrial oxygen consumption rates, we developed and characterized flavonol-based CO donor compounds that differ at their site of release. These molecules are metal-free, visible light triggered CO donors (photoCORMs) that quantitatively release CO and are trackable in cells via confocal microscopy. Our studies indicate that at a concentration of 10 μM, the mitochondrial-localized and cytosolic CO-releasing compounds are similarly effective in terms of decreasing ATP production, maximal respiration, and the reserve capacity of A549 cells. This concentration is the lowest to impart changes in mitochondrial bioenergetics for any CO-releasing molecule (CORM) reported to date. The results reported herein demonstrate the feasibility of using a structurally tunable organic photoCORM framework for comparative intracellular studies of the biological effects of carbon monoxide.
Since the discovery of CHD1L in 2008, it has emerged as an oncogene implicated in the pathology and poor prognosis of a variety of cancers, including gastrointestinal cancers. However, a mechanistic understanding of CHD1L as a driver of colorectal cancer has been limited. Until now, there have been no reported inhibitors of CHD1L, also limiting its development as a molecular target. We sought to characterize the clinicopathologic link between CHD1L and colorectal cancer, determine the mechanism(s) by which CHD1L drives malignant colorectal cancer, and discover the first inhibitors with potential for novel treatments for colorectal cancer. The clinicopathologic characteristics associated with CHD1L expression were evaluated using microarray data from 585 patients with colorectal cancer. Further analysis of microarray data indicated that CHD1L may function through the Wnt/TCF pathway. Thus, we conducted knockdown and overexpression studies with CHD1L to determine its role in Wnt/TCF-driven epithelial-to-mesenchymal transition (EMT). We performed high-throughput screening (HTS) to identify the first CHD1L inhibitors. The mechanism of action, antitumor efficacy, and drug-like properties of lead CHD1L inhibitors were determined using biochemical assays, cell models, tumor organoids, patientderived tumor organoids, and in vivo pharmacokinetics and pharmacodynamics. Lead CHD1L inhibitors display potent in vitro antitumor activity by reversing TCF-driven EMT. The best lead CHD1L inhibitor possesses drug-like properties in pharmacokinetic/pharmacodynamic mouse models. This work validates CHD1L as a druggable target and establishes a novel therapeutic strategy for the treatment of colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.