A total of 150 microsatellite markers developed for common bean (Phaseolus vulgaris L.) were tested for parental polymorphism and used to determine the positions of 100 genetic loci on an integrated genetic map of the species. The value of these single-copy markers was evident in their ability to link two existing RFLP-based genetic maps with a base map developed for the Mesoamerican Andean population, DOR364 G19833. Two types of microsatellites were mapped, based respectively on gene-coding and anonymous genomic-sequences. Gene-based microsatellites proved to be less polymorphic (46.3%) than anonymous genomic microsatellites (64.3%) between the parents of two intergenepool crosses. The majority of the microsatellites produced single bands and detected single loci, however four of the gene-based and three of the genomic microsatellites produced consistent double or multiple banding patterns and detected more than one locus. Microsatellite loci were found on each of the 11 chromosomes of common bean, the number per chromosome ranging from 5 to 17 with an average of ten microsatellites each. Total map length for the base map was 1,720 cM and the average chromosome length was 156.4 cM, with an average distance between microsatellite loci of 19.5 cM. The development of new microsatellites from sequences in the Genbank database and the implication of these results for genetic mapping, quantitative trait locus analysis and marker-assisted selection in common bean are described.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)
Cultivated common bean germplasm is especially diverse due to the parallel domestication of two genepools in the Mesoamerican and Andean centers of diversity and introgression between these gene pools. Classification into morphological races has helped to provide a framework for utilization of this cultivated germplasm. Meanwhile, core collections along with molecular markers are useful tools for organizing and analyzing representative sets of these genotypes. In this study, we evaluated 604 accessions from the CIAT core germplasm collection representing wide genetic variability from both primary and secondary centers of diversity with a newly developed, fluorescent microsatellite marker set of 36 genomic and gene-based SSRs to determine molecular diversity and with seed protein analysis to determine phaseolin alleles. The entire collection could be divided into two genepools and five predominant races with the division between the Mesoamerica race and the Durango-Jalisco group showing strong support within the Mesoamerican genepool and the Nueva Granada and Peru races showing less diversity overall and some between-group admixture within the Andean genepool. The Chile race could not be distinguished within the Andean genepool but there was support for the Guatemala race within the Mesoamerican genepool and this race was unique in its high level of diversity and distance from other Mesoamerican races. Based on this population structure, significant associations were found between SSR loci and seed size characteristics, some on the same linkage group as the phaseolin locus, which previously had been associated with seed size, or in other regions of the genome. In conclusion, this study has shown that common bean has very significant population structure that can help guide the construction of genetic crosses that maximize diversity as well as serving as a basis for additional association studies.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 x G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.
developed models allowed us to predict genotypic performance under different environmental stresses. This will be a key factor in the development of common bean varieties adapted to future challenging conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.