Bacteria mineralization is a promising biotechnological approach to apply in biomaterials development. In this investigation, we demonstrate that Bacillus subtilis 168 induces and influences CaCO3 composites precipitation. Crystals were formed in calcium-carbon non-coupled (glycerol + CaCl2, GLY; or glucose + CaCl2, GLC) and coupled (calcium lactate, LAC; or calcium acetate, ACE) agar-sources, only maintaining the same Ca2+ concentration. The mineralized colonies showed variations in morphology, size, and crystallinity form properties. The crystals presented spherulitic growth in all conditions, and botryoidal shapes in GLC one. Birefringence and diffraction patterns confirmed that all biogenic carbonate crystals (BCC) were organized as calcite. The CaCO3 in BCC was organized as calcite, amorphous calcium carbon (ACC) and organic matter (OM) of biofilm; all of them with relative abundance related to bacteria growth condition. BCC-GLY presented greatest OM composition, while BCC-ACE highest CaCO3 content. Nucleation mechanism and OM content impacted in BCC crystallinity.
In recent years, biological mineralization has been implemented as a viable option for the elaboration of new building materials, protection and repair of concrete by self-healing, soil stabilization, carbon dioxide capture, and drug delivery. Biogenic mineralization of calcium carbonate (CaCO3) induced by bacterial metabolism has been proposed as an effective method. The objective of the present study was to characterize the bioprecipitation of CaCO3 crystals by Bacillus subtilis in a semi-solid system. The results show that CaCO3 crystals were produced by day 3 of incubation. The prevalent crystalline polymorph was calcite, and in a minor proportion, vaterite. The presence of amorphous material was also detected (amorphous CaCO3 (ACC)). Finally, the crystallinity index was 81.1%. This biogenic calcium carbonate does not decrease pH and does not yield chloride formation. Contrary, it increases pH values up to 10, which constitutes and advantage for implementations at reinforced concrete. Novel applications for biogenic calcium carbonate derived from Bacillus subtilis addressing self-healing, biocementation processes, and biorestoration of monuments are presented.
Bacteria mineralization is a promising biotechnological approach to apply in biomaterials development. In this investigation, we demonstrate that Bacillus subtilis 168 induces and influences CaCO3 composites precipitation. Crystals were formed in calcium-carbon non-coupled (glycerol + CaCl2, GLY; or glucose + CaCl2, GLC) and coupled (calcium lactate, LAC; or calcium acetate, ACE) agar-sources, only maintaining the same Ca2+ concentration. The mineralized colonies showed variations in morphology, size, and crystallinity form properties. The crystals presented spherulitic growth in all conditions, and botryoidal shapes in GLC one. Birefringence and diffraction patterns confirmed that all biogenic carbonate crystals (BCC) were organized as calcite. The CaCO3 in BCC was organized as calcite, amorphous calcium carbon (ACC) and organic matter (OM) of biofilm; all of them with relative abundance related to bacteria growth condition. BCC-GLY presented greatest OM composition, while BCC-ACE highest CaCO3 content. Nucleation mechanism and OM content impacted in BCC crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.