Several members of Cohnella genus have been reported as xylanolytic bacteria with significant capacity as carbohydrate-active enzyme producers (CAZymes), whose mechanisms involving xylan degradation are a key goal for suitable applications in bio-based industries. Using Cohnella sp. AR92 bacterium, we ensembled a genomic-proteomic approach to assess plant biomass conversion targeting its xylanolytic set of enzymes. Also, the genomic traits of the strain AR92 were compared to other Cohnella spp., showing a significant variability in terms of genome sizes and content of genes that code CAZymes. The AR92 strain genome harbours 209 CAZymes encoding sequences active on different polysaccharides, particularly directed towards xylans. Concurrent proteomic data recovered from cultures containing three kinds of lignocellulosic-derived substrates showed a broad set of xylan-degrading enzymes. The most abundant CAZymes expressed in the different conditions assayed were endo-β-1,4-xylanases belonging to the GH11 and GH10 families, enzymes that were previously proved to be useful in the biotransformation of lignocellulosic biomass derived from sugarcane as well as onto xylan-enriched substrates. Therefore, considering the large reserve of CAZymes of Cohnella sp. AR92, a xylan processing model for AR92 strain is proposed.
Members of Cohnella sp. isolated from a variety of environments have been shown to be glycoside hydrolase producers. Nevertheless, most evaluations of members of this genus are limited to their taxonomic description. The strain AR92, previously identified as belonging to the genus Cohnella, formed a well-supported cluster with C. thailandensis and C. formosensis (>80% bootstrap confidence). Its growth and xylanase production were approached by using a mineral-based medium containing alkali-pretreated sugarcane bagasse as the main carbon source, which was assayed as a convenient source to produce biocatalysts potentially fitting its degradation. By means of a two-step statistical approach, the production of endoxylanase was moderately improved (20%). However, a far more significant improvement was observed (145%), by increasing the inoculum size and lowering the fermentation temperature to 25°C, which is below the optimal growth temperature of the strain AR92 (37°C). The xylanolytic preparation produced by Cohnella sp. AR92 contained mild temperature-active endoxylanase (identified as redundant GH10 family) for the main activity which resulted in xylobiose and xylo-oligosaccharides as the main products from birchwood xylan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.