Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44º30'S-46ºS) and the Andes (Meseta de Chalia,46ºS) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and zones of low lithospheric strength. The occurrence of Eocene growth-strata (~44-40 Ma) suggests that
The Auca Mahuida volcanic field lies on the southernmost Payenia Volcanic Province, one of the broadest retroarc volcanic plateaux in the southern Central Andes (~38°S). This voluminous basaltic flooding of Quaternary age was originated from a deep asthenospheric source, interpreted as a mantle plume product of changing slab dynamics. The geometry of this source is deduced from magnetotelluric data, but the limited spatial coverage of this array does not allow a detailed resolution of this anomaly. In order to present a detailed geometry of the conductive anomaly and related crustal magmatic bodies, we used multiple data sources. We combined Magnetic and Bouguer anomalies, Curie isotherm depth (T c ), Elastic Thickness (T e ) and Moho depth derived from the Global Earth Magnetic Anomaly Grid (EMAG2) and terrestrial gravity measurements, all together in a holistic geophysical analysis. The magnetic data depict a nearly 200-km-in-diameter circular anomaly that would correspond to a dense body according to the Bouguer anomaly. Geoid data from the Gravity Field Model (EIGEN-6c4) have been filtered in order to isolate deeper mass influences and visualize the asthenospheric upwelling previously described from magnetotelluric data. Moho inversion yields a crustal attenuation at 36-to 32-km depth coinciding with T e below 20-km depth and a shallow T c (≤15-km depth) at the site where Geoid positive undulation was calculated. Finally, surface analysis allowed defining a topographic swell, compatible with the dimensions of the identified magnetic anomaly, where the main rivers deviated, potentially due to a recent base level change.Sources associated with this anomalous retroarc magmatism were envisaged in the last years through considerable amounts of geophysical and geochemical data (Burd et al., 2014; Pesicek et al., 2012; Richarte ASTORT ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.