Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.
Pleistocene detrital deposits in the central Ebro Basin frequently show deformation features due mainly to karstification in the underlying Neogene evaporites. In 123 cases, estimation of parameters of shape and minimum volume of materials involved was accomplished. Six of them were analysed in more detail to establish the main processes involved in their genesis and the succession of events. All the deformation features in the selected sites are synsedimentary. To achieve the objectives, intense fieldwork was made applying methods of sedimentology and structural geology. Usually, a complex evolutionary pattern was observed, with evidences of dissolution, sagging, collapse, gravity flow, suffosion, and plastic flow. In a schematic way, three main situations, independent of the age of the analysed deposits, can be distinguished: (a) slow subsidence, (b) collapse, and (c) temporal overlapping of both processes. In the first 2 scenarios, basins with smooth or abrupt borders, respectively, were generated on the land surface. In the third one, slow subsidence was followed by a collapse, located in the area of maximum flexure. These patterns are also observed in present-day dolines. Comparison of direct and indirect parameters between paleodolines and present-day dolines indicates a bigger size of the latter, probably caused by the different conditions of observation. This study helps to know the possibilities in the evolution of mantled karst features, to estimate the volume of material affected by karstification and to improve the knowledge of present-day dolines behaviour. Consequently, study of paleodolines must be considered to achieve a better urban planning in active karstic areas.
During Early, as proposed by the International commission on stratigraphy Pleistocene times, interacting fluvial and aeolian processes constructed wide alluvial plains over an evaporitedominated Miocene substratum in the central Ebro Basin. An exceptional site where these deposits show faults, folds, diapirs, karst structures and unconformities has been studied in detail. Analysis of particular structures demonstrates the interaction by that time of tectonic faulting, diapirism, karstification and sedimentation in an area where deformation was traditionally linked to the presence of underlying evaporites, without proposing any precise mechanism. Multiple approaches (sedimentology, structural geology and geophysics) have been used in order to discriminate the origin of each type of structure as well as to understand the interaction between different processes. Numerous normal faults and fractures of variable size are consistent with the regional stress field. Pleistocene deposits are pierced by diapirs of Miocene evaporites and disrupted by karst structures with different geometries (tubular, funnel and vault), both partially controlled by tectonics. The example described is proposed as an analogue model that could successfully illustrate evolution patterns of basins of potential interest for petroleum geology where similar processes have actuated, resulting in complex stratigraphical architectures.
The central Ebro Basin is an exceptional region for studying karstification through time and under different environmental conditions, as sinkholes have been developing since the Early Pleistocene. Knowledge of active sinkholes is complemented with research on paleosinkholes and contemporary deposits. Sedimentological, mineralogical, geomorphological and structural approaches permit interpretation of the natural environmental conditions that favored karst in the past and the main genetic mechanisms involved. The sedimentary features of Pleistocene terraces indicate that they were deposited by a gravel braided fluvial system characterized by higher water and sediment availability than today, probably related to meltwater flows coming from glaciated source areas, mainly in the Pyrenees. Genesis of paleosinkholes was mainly linked to this high water supply. Some of them acted as small lakes where fine sediments are exceptionally well conserved to give clues about environmental conditions. The neoformation of palygorskite and sepiolite suggests arid to semiarid climatic conditions, in agreement with the idea of cold glacial episodes. During Pleistocene times, development of sinkholes was influenced by tectonics. Currently, the genesis and evolution of numerous sinkholes are also influenced by water supplies from human activities such as irrigation or urbanization, sharply changing the nearly steady state exhibited in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.