Under physiological conditions, L-arginine transport by porcine pulmonary artery endothelial cells (PAEC) is mediated by system y+, a sodium-independent transport system that accounts for 60 +/- 5% of L-arginine transport, and system Bo,+, a sodium-dependent system that accounts for 40 +/- 5% of transport. Because NO production is dependent on intracellular L-arginine content and intracellular L-arginine content depends on transport of extracellular L-arginine, we examined the effect of hypoxia on L-arginine transport and intracellular L-arginine content in PAEC. Exposure of passage 3-7 PAEC in monolayer culture to 0% O2 for 4 h decreased L-arginine transport via system y+ from 120 +/- 10 to 81 +/- 23 (in pmol.mg protein-1.30 s-1) (P < 0.001), whereas 20-h exposures decreased transport from 122 +/- 17 to 84 +/- 18 (P < 0.001) in system y+ and from 104 +/- 19 to 90 +/- 26 (P < 0.05) in system Bo,+. Exposure to 5% O2 for 3-5 wk decreased L-arginine transport via system y+ from 128 +/- 15 to 73 +/- 13 (P < 0.001) and via system Bo,+, from 105 +/- 25 to 65 +/- 13 (P < 0.001). Kinetic studies revealed that hypoxia decreased the maximal transport velocity but not the apparent Michaelis constant for both system y+ and system Bo,+, and the decreases in transport were not reversible after return to normoxia for up to 24 h. Long-term exposure, i.e., 3-5 wk, to 5% O2 also resulted in decreases in intracellular L-arginine content (0.75 +/- 0.10 vs. 0.49 +/- 0.09 nmol/10(6) cells, P < 0.05) which did not reverse after return to normoxia for 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)
System y+ accounts for the majority of L-arginine transport by pulmonary artery endothelial cells (PAEC). Given that membrane potential is a driving force for transport via system y+, we examined the hypothesis that hypoxia inhibits this transport by decreasing membrane potential. Porcine PAEC or plasma membrane vesicles derived from these cells were exposed to normoxia (room air-5% CO2) or hypoxia (0% O2-95% N2-5% CO2). After exposure, L-[3H]arginine transport and/or accumulation of the lipophilic cation [3H]tetraphenylphosphonium, a quantitative sensor of changes in cell membrane potential, were measured. Hypoxia caused reversible time-dependent decrease in L-arginine transport and membrane potential in PAEC and in plasma membrane vesicles. Comparable decreases in membrane potential and L-arginine transport by PAEC were also observed after depolarization induced by KCl or ouabain. Hyperpolarization, induced by valinomycin, increased membrane potential and L-arginine transport in PAEC and plasma membrane vesicles. Valinomycin also prevented the hypoxia-mediated decreases in membrane potential and L-arginine transport in PAEC. These results indicate that hypoxia-induced plasma membrane depolarization is responsible for reduced L-arginine transport by system y+ in hypoxic porcine PAEC.
An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. We have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here we demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.