The sterile insect technique (SIT) is an environmentally safe and proven technology to suppress wild populations. To further advance its utility, a novel CRISPR-based technology termed precision guided SIT (pgSIT) is described. PgSIT mechanistically relies on a dominant genetic technology that enables simultaneous sexing and sterilization, facilitating the release of eggs into the environment ensuring only sterile adult males emerge. Importantly, for field applications, the release of eggs will eliminate burdens of manually sexing and sterilizing males, thereby reducing overall effort and increasing scalability. Here, to demonstrate efficacy, we systematically engineer multiple pgSIT systems in Drosophila which consistently give rise to 100% sterile males. Importantly, we demonstrate that pgSIT-generated sterile males are fit and competitive. Using mathematical models, we predict pgSIT will induce substantially greater population suppression than can be achieved by currently-available self-limiting suppression technologies. Taken together, pgSIT offers to potentially transform our ability to control insect agricultural pests and disease vectors.
As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3–5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns – a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively “absorbed” as they move outwards from their origin of travel. The gravity model provided a better fit to the data overall and for travel to large populations, while the radiation model provided a better fit for nearby populations. One strength of the data set was that trips could be categorized according to traveler group – namely, women traveling with children in all survey countries and youth workers in Mali. For gravity models fitted to data specific to these groups, youth workers were found to have a higher travel frequency to large population centers, and women traveling with children a lower frequency. These models may help predict the spatial transmission of malaria parasites and inform strategies to control their spread.
Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system induces a severe fitness load resulting in population decline or extinction. DNA sequence polymorphisms representing alternate alleles at gRNA target sites may confer a drive-resistant phenotype in individuals carrying them. Modeling predicts that, for observed levels of SGV at potential target sites and observed rates of de novo DRA formation, population modification strategies are uniquely resilient to DRAs. We conclude that gene drives can succeed when fitness costs incurred by drive-carrying mosquitoes are low enough to prevent strong positive selection for DRAs produced de novo or as part of the SGV and that population modification strategies are less prone to failure due to drive resistance.
The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and zika, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are needed. To complement existing measures, here we develop a molecular genetic control system termed precision guided sterile insect technique (pgSIT) in Aedes aegypti. PgSIT uses a simple CRISPR-based approach to generate sterile males that are deployable at any life stage. Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, suppress, and eliminate mosquitoes in multigenerational population cages. This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable, and reversible manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.