Rapid and reliable methods for documenting soil erosion associated with forest harvest operations are needed to support the development of best management practices for soil and water conservation. To address this need, the potential for using 7Be measurements to estimate patterns and amounts of soil redistribution associated with individual post-harvest events was explored. The 7Be technique, which was originally developed for use on agricultural land, was employed to estimate soil redistribution associated with a period of heavy rainfall within a harvested forest area located in the Lake Region of Chile (39 degrees 44'7'' S, 73 degrees 10'39'' W; 22% slope; and mean annual rainfall 2300 mm yr(-1)). The results provided by the 7Be technique were validated against direct measurements of soil gain or loss during the same period obtained using erosion pins. The information produced by the two approaches was similar. The results of this study demonstrate the potential for using 7Be measurements to document event-based erosion in recently harvested forest areas.
In this article, we focus on the fundamental role of vitamin C transporters for the normal delivery of vitamin C to germ cells in the adluminal compartment of seminiferous tubules. We argue that the redox status within spermatozoa or in semen is partly responsible for the etiology of infertility. In this context, antioxidant defence plays a critical role in male fertility. Vitamin C, a micronutrient required for a wide variety of metabolic functions, has long been associated with male reproduction. Two systems for vitamin C transport have been described in mammals. Facilitative hexose transporters (GLUTs), with 14 known isoforms to date, GLUT1-GLUT14, transport the oxidized form of vitamin C (dehydroascorbic acid) into the cells. Sodium ascorbic acid co-transporters (SVCTs), SVCT1 and SVCT2 transport the reduced form of vitamin C (ascorbic acid). Sertoli cells control germ cell proliferation and differentiation through cell-cell communication and form the blood-testis barrier. Because the blood-testis barrier limits direct access of molecules from the plasma into the adluminal compartment of the seminiferous tubule, one important question is the method by which germ cells obtain vitamin C. Some interesting results have thrown light on this matter. Expression of SVCT2 and some isoforms of GLUT transporters in the testis have previously been described. Our group has demonstrated that Sertoli cells express functionally active vitamin C transporters. Kinetic characteristics were described for both transport systems (SVCT and GLUT systems). Sertoli cells are able to transport both forms of vitamin C. These fi ndings are extremely relevant, because Sertoli cells may control the amount of vitamin C in the adluminal compartment, as well as regulating the availability of this metabolite throughout spermatogenesis.
Glycogen is the main source of glucose for many biological events. However, this molecule may have other functions, including those that have deleterious effects on cells. The rate-limiting enzyme in glycogen synthesis is glycogen synthase (GS). It is encoded by two genes, GYS1, expressed in muscle (muscle glycogen synthase, MGS) and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase, LGS). Expression of GS and its activity have been widely studied in many tissues. To date, it is not clear which GS isoform is responsible for glycogen synthesis and the role of glycogen in testis. Using RT-PCR, Western blot and immunofluorescence, we have detected expression of MGS but not LGS in mice testis during development. We have also evaluated GS activity and glycogen storage at different days after birth and we show that both GS activity and levels of glycogen are higher during the first days of development. Using RT-PCR, we have also shown that malin and laforin are expressed in testis, key enzymes for regulation of GS activity. These proteins form an active complex that regulates MGS by poly-ubiquitination in both Sertoli cell and male germ cell lines. In addition, PTG overexpression in male germ cell line triggered apoptosis by caspase3 activation, proposing a proapoptotic role of glycogen in testis. These findings suggest that GS activity and glycogen synthesis in testis could be regulated and a disruption of this process may be responsible for the apoptosis and degeneration of seminiferous tubules and possible cause of infertility.
Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
Autophagy mediates the degradation of cytoplasmic material. Upon autophagy induction, autophagosomes form a sealed membrane around the cargo and fuse with the lytic compartment to release the cargo for degradation. In order to avoid premature fusion of immature autophagosomal membranes with the lytic compartment, this process needs to be tightly regulated. Several factors mediating autophagosome-vacuole fusion have recently been identified. In budding yeast, autophagosome-vacuole fusion requires the R-SNARE Ykt6 on the autophagosome, together with the three Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. However, how these SNAREs are regulated during the fusion process is poorly understood. In this study, we investigate the regulation of Ykt6. We found that Ykt6 is directly phosphorylated by Atg1 kinase, which keeps this SNARE in an inactive state. Ykt6 phosphorylation prevents SNARE bundling by disrupting its interaction with the vacuolar SNAREs Vam3 and Vti1, thereby preventing premature autophagosome-vacuole fusion. These findings shed new light on the regulation of autophagosome-vacuole fusion and reveal a further step in autophagy controlled by the Atg1 kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.