Plants are important reservoirs of described and undescribed species of yeast. During a study of yeasts associated with bromeliads from the Northeast region of Brazil (collected in 2013–2017), analysis of the D1/D2 domain of the LSU rRNA and internal transcribed spacer (ITS) region identified eleven strains of yeasts as representing an unknown species of the genus Vishniacozyma. The species may have a diverse habitat in Brazil as a strain was collected from a flowering plant (Acanthaceae) in 1994. As a consequence, we propose Vishniacozyma alagoana sp. nov. as a member of the tremellomycetes yeasts (Agaricomycotina, Basidiomycota). Vishniacozyma alagoana sp. nov. was found in Atlantic Forest (a tropical rainforest) and the Caatinga (a seasonally dry tropical forest) associated with bromeliads in northeast and southeastern Brazil. The proposed novel species is related to Vishniacozyma taibaiensis and distinguished by eight nucleotide substitutions in the D1/D2 domain and seventeen in the ITS region. In addition, Vishniacozyma alagoana sp. nov. differs from V. taibaiensis by the ability to assimilate ribitol. The holotype is CBS 15966T.
Yeast surveys associated with different bromeliads in north-eastern Brazil led to the proposal of two novel yeast species, Carlosrosaea hohenbergiae sp. nov. and Carlosrosaea aechmeae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested an affinity with a phylogenetic lineage that includes recently reclassified Carlosrosaeavrieseae. Six isolates of the novel species were obtained from different bromeliad species collected in three Atlantic Forest fragments in Alagoas state, Brazil. Ca. hohenbergiae sp. nov. differs by 69 and 12 nucleotide substitutions in the ITS and D1/D2 domain, respectively, from Ca. vrieseae. The type strain is UFMG-CM-Y405T (=BSB 34T=CBS 14563T), Mycobank 819227. Ca. aechmeae sp. nov. is represented by one strain isolated from Aechmea constantinii leaves. Ca. aechmeae sp. nov. differs from the related species Ca. hohenbergiae and Ca. vrieseae by 36 and 65 nucleotide substitutions, respectively, in the ITS region and by 12 and 15 nucleotide substitutions in the D1/D2 domain, respectively. The type strain of Ca. aechmeae sp. nov. is UFMG-CM-Y6095T (=BM 94T=CBS 14578), Mycobank 819228.
Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.