This study aimed to gain an insight into the adaptations of muscle strength and skeletal muscle thickness after two different volumes of blood flow restriction training (BFRT), and compare them with high-intensity training. The sample was divided into four groups: low-volume, low-intensity BFRT (BFRT LV); high-volume, low-intensity BFRT (BFRT HV); traditional high-intensity resistance training (HIT); and a control group, which maintained their routine activities (CON). Leg extension one repetition maximum (1RM), isokinetic peak knee extension, and flexion torques at 60°/s and 180°/s as well as muscle thickness of the rectus femoris (RF) and vastus lateralis (VL) were assessed at baseline and after 5 weeks of training BFRT LV (7.03%, P < 0.05), BFRT HV (6.24%, P < 0.05) and HIT (18.86%, P < 0.001) groups increased 1RM performance, while no changes were observed in the CON group. Muscle thickness of the RF and VL was increased irrespective of the training group (7.5%, P < 0.001; and 9.9%, P < 0.001, respectively). We conclude that doubling the exercise volume with BFRT causes no further benefit with muscular size or strength. Although similar increases in muscle thickness were observed between training groups, HIT increased 1RM performance to a greater extent compared to either volume of BFRT.
Study design: Crossover trial. Objectives: To investigate the effects of whole-body vibration (WBV) on muscular activity and blood flow velocity after different vibration treatments in patients with spinal cord injury (SCI). Setting: Research Center on Physical Disability (Spain). Methods: Eight individuals with SCI received six 3-min WBV treatments depending on a combination of frequency (10, 20 or 30 Hz) and protocol (constant, that is, three consecutive minutes of WBV, or fragmented, that is, three sets of 1 min of WBV with 1 min of rest between the sets). Femoral artery blood flow velocity was registered at minutes 1, 2 and 3 of WBV, and at minutes 1 and 2 after the end of the stimulus. Electromyography activity (EMG) of vastus lateralis (VL) and vastus medialis (VM) was registered at baseline and during WBV. Results: Peak blood velocity (PBV) increased after 1, 2 and 3 min of WBV. The 10 Hz frequency did not alter blood flow, whereas the 20 Hz frequency increased PBV after 2 and 3 min of WBV, and the 30 Hz frequency increased PBV after 1, 2 and 3 min of WBV and during the first minute after the end of the stimulus. No protocol effect was observed for blood parameters. EMG activity of VL and VM increased independently of the applied frequency or protocol. Conclusion: WBV is an effective method to increase leg blood flow and to activate muscle mass in SCI patients, and could be considered to be incorporated in their rehabilitation programs.
It seems that whole-body vibration exercise does not augment the increase in neuromuscular performance and lower limb muscle architecture induced by isometric exercise alone in stroke patients.
Martín-Hernández, J, Ruiz-Aguado, J, Herrero, AJ, Loenneke, JP, Aagaard, P, Cristi-Montero, C, Menéndez, H, and Marín, PJ. Adaptation of perceptual responses to low-load blood flow restriction training. J Strength Cond Res 31(3): 765-772, 2017-The purpose of this study was to determine the adaptive response of ratings of perceived exertion (RPE) and pain over 6 consecutive training sessions. Thirty subjects were assigned to either a blood flow restriction training (BFRT) group or a high-intensity resistance training (HIT) group. Blood flow-restricted training group performed 4 sets (30 + 15 + 15 + 15, respectively) of unilateral leg extension at an intensity of 20% one repetition maximum (1RM) while a restrictive cuff was applied to the most proximal part of the leg. The HIT group performed 3 sets of 8 repetitions with 85% 1RM. Ratings of perceived exertion and pain were assessed immediately after each exercise set along the 6 training sessions and were then averaged to obtain the overall RPE and pain per session. Statistical analyses showed significant main effects for group (p ≤ 0.05) and time (p < 0.001). Ratings of perceived exertion values dropped from session 1 to session 6 in both BFRT (8.12 ± 1.3 to 5.7 ± 1.1, p < 0.001) and HIT (8.5 ± 1.2 to 6.40 ± 1.2, p < 0.001). Similar results were observed regarding pain ratings (BFRT: 8.12 ± 1.3 to 5.90 ± 1.55, p < 0.001; HIT: 6.22 ± 1.7 to 5.14 ± 1.42, p < 0.01). Our results indicate that RPE was higher after HIT, whereas differences did not reach significance regarding pain. These perceptual responses were attenuated over time, and the time course of this adaptive response was similar between BFRT and HIT. In summary, BFRT induces a marked perceptual response to training, comparable with that observed with HIT. However, this response becomes attenuated with continuous practice, leading to moderate values of RPE and pain. Perceptual responses may not limit the application of BFRT to highly motivated individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.