Escherichia coli and the antimicrobial pressure exerted on this microorganism can be modulated by factors dependent on the host. In this paper, we describe the distribution of antimicrobial resistance to amikacin, tobramycin, ampicillin, amoxicillin clavulanate, cefuroxime, cefoxitin, cefotaxime, imipenem, ciprofloxacin, fosfomycin, nitrofurantoin, and trimetoprim-sulfametoxazole in more than 100,000 E. coli isolates according to culture site and patient age, gender, and location. Bayesian inference was planned in all statistical analysis, and Markov chain Monte Carlo simulation was employed to estimate the model parameters. Our findings show the existence of a marked difference in the susceptibility to several antimicrobial agents depending on from where E. coli was isolated, with higher levels of resistance in isolates from medical devices, the respiratory system, and the skin and soft tissues; a higher resistance percentage in men than in women; and the existence of a clear difference in antimicrobial resistance with an age influence that cannot be explained merely by means of an increase of resistance after exposure to antimicrobials. Both men and women show increases in resistance with age, but while women show constant levels of resistance or slight increases during childbearing age and greater increases in the premenopausal age, men show a marked increase in resistance in the pubertal age. In conclusion, an overwhelming amount of data reveals the great adaptation capacity of E. coli and its close interaction with the host. Sex, age, and the origin of infection are determining factors with the ability to modulate antimicrobial resistances.
We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐truncated proportional‐hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects.General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event‐free probabilities and predict future longitudinal marker values.The model is applied to the assessment of breast cancer risk in women attending a population‐based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI‐RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.