The utilization of optimization algorithms within engineering problems has had a major rise in recent years, which has led to the proliferation of a large number of new algorithms to solve optimization problems. In addition, the emergence of new parallelization techniques applicable to these algorithms to improve their convergence time has made it a subject of study by many authors. Recently, two optimization algorithms have been developed: Teaching-Learning Based Optimization and Jaya. One of the main advantages of both algorithms over other optimization methods is that the former do not need to adjust specific parameters for the particular problem to which they are applied. In this paper, the parallel implementations of Teaching-Learning Based Optimization and Jaya are compared. The parallelization of both algorithms is performed using manycore GPU techniques. Different scenarios will be created involving functions frequently applied to the evaluation of optimization algorithms. Results will make it possible to compare both parallel algorithms with regard to the number of iterations and the time needed to perform them so as to obtain a predefined error level. The GPU resources occupation in each case will also be analyzed.
The development of the smart city concept and inhabitants’ need to reduce travel time, in addition to society’s awareness of the importance of reducing fuel consumption and respecting the environment, have led to a new approach to the classic travelling salesman problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?”. At present, with the development of Internet of Things (IoT) devices and increased capabilities of sensors, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the aim is to provide a solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm Teacher Learner Based Optimization (TLBO). In addition, to improve performance, the solution is implemented by means of a parallel graphics processing unit (GPU) architecture, specifically a Compute Unified Device Architecture (CUDA) implementation.
The development of the smart city concept and the inhabitants’ need to reduce travel time, as well as society’s awareness of the reduction of fuel consumption and respect for the environment, lead to a new approach to the classic problem of the Travelling Salesman Problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?” Nowadays, with the development of IoT devices and the high sensoring capabilities, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the purpose is to give solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm TLBO (Teacher Learner Based Optimization). In addition, to improve performance, the solution is implemented using a parallel GPU architecture, specifically a CUDA implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.