Efficient management of a drinking water network reduces the economic costs related to water production and transport (pumping). Model predictive control (MPC) is nowadays a quite well-accepted approach for the efficient management of the water networks because it allows formulating the control problem in terms of the optimization of the economic costs. Therefore, short-term forecasts are a key issue in the performance of MPC applied to water distribution networks. However, the short-term horizon demand forecast in a horizon of 24 hours in an hourly based scale presents some challenges as the water consumption can change from one day to another, according to certain patterns of behavior (e.g., holidays and business days). This paper focuses on the problem of forecasting water demand for the next 24 hours. In this work, we propose to use a bank of models instead of a single model. Each model is designed for forecasting one particular hour. Hourly models use artificial neural networks. The architecture design and the training process are performed using genetic algorithms. The proposed approach is assessed using demand data from the Barcelona water network.
This paper presents a multi-model predictor called Qualitative Multi-Model Predictor Plus (QMMP+) for demand forecast in water distribution networks. QMMP+ is based on the decomposition of the quantitative and qualitative information of the time-series. The quantitative component (i.e., the daily consumption prediction) is forecasted and the pattern mode estimated using a Nearest Neighbor (NN) classifier and a Calendar. The patterns are updated via a simple Moving Average scheme. The NN classifier and the Calendar are executed simultaneously every period and the most suited model for prediction is selected using a probabilistic approach. The proposed solution for water demand forecast is compared against Radial Basis Function Artificial Neural Networks (RBF-ANN), the statistical Autoregressive Integrated Moving Average (ARIMA), and Double Seasonal Holt-Winters (DSHW) approaches, providing the best results when applied to real demand of the Barcelona Water Distribution Network. QMMP+ has demonstrated that the special modelling treatment of water consumption patterns improves the forecasting accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.