3 This paper describes the capabilities of a novel technique to investigate crack formation and 4 propagation in drying soils. The technique is a relatively simple, non-destructive indirect 5 technique using a ground-penetrating-radar (GPR) system to detect cracks that form and 6 propagate inside a soil specimen during desiccation. Although GPR devices have been used
This entry presents the theoretical fundamentals, the mathematical formulation, and the numerical solution for the problem of desiccation cracks in clayey soils. The formulation uses two stress state variables (total stress and suction) and results in a non-symmetric and nonlinear system of transient partial differential equations. A release node algorithm technique is proposed to simulate cracking, and the strategy to implement it in the hydromechanical framework is explained in detail. This general framework was validated with experimental results, and several numerical examples were published at international conferences and in journal papers.
This paper presents the fundamentals and the mathematical formulation to study desiccation cracking in soils based on Unsaturated Soil Mechanics as well as a numerical analysis of a previous desiccation test program. The numerical approach implemented in MATLAB is used in 2D simulations on radial sections of the cylindrical specimens and in a theoretical study of the stress field in plane strain conditions. The numerical analysis, based on two stress stare variables (total net stress and suction) is consistent and in good agreement with the experimental results, including the location of cracks and time of crack initiation.
The effects of sewage sludge biochar (SSB) on the microbial environment, Chinese cabbage yield, and heavy metals (HMs) availability of soil were comprehensively investigated in this study. Results showed that the concentrations of the dehydrogenase (DHA) and urease in the soil added with 10% SSB were 3.60 and 1.67 times as high as that of the control soil, respectively, after planting; the concentrations of the bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in the soil added with 10% SSB after planting reached 2.84, 2.62, 1.76, and 2.23 times, respectively, compared with those of the control group; the weights of the aboveground and underground parts of Chinese cabbage were 5.82 and 8.67 times as high as those of the control group, respectively. Moreover, the addition of SSB enhanced the immobilization of Cr, Ni, and Cd. All in all, SSB can improve the microbial environment of soil and inhibit the availability of HMs, which is very important for their utilization in barren soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.