Drawing on various notions from theoretical computer science, we present a novel numerical approach, motivated by the notion of algorithmic probability, to the problem of approximating the Kolmogorov-Chaitin complexity of short strings. The method is an alternative to the traditional lossless compression algorithms, which it may complement, the two being serviceable for different string lengths. We provide a thorough analysis for all binary strings of length and for most strings of length by running all Turing machines with 5 states and 2 symbols ( with reduction techniques) using the most standard formalism of Turing machines, used in for example the Busy Beaver problem. We address the question of stability and error estimation, the sensitivity of the continued application of the method for wider coverage and better accuracy, and provide statistical evidence suggesting robustness. As with compression algorithms, this work promises to deliver a range of applications, and to provide insight into the question of complexity calculation of finite (and short) strings.Additional material can be found at the Algorithmic Nature Group website at http://www.algorithmicnature.org. An Online Algorithmic Complexity Calculator implementing this technique and making the data available to the research community is accessible at http://www.complexitycalculator.com.
We investigate the properties of a Block Decomposition Method (BDM), which extends the power of a Coding Theorem Method (CTM) that approximates local estimations of algorithmic complexity based upon Solomonoff-Levin's theory of algorithmic probability providing a closer connection to algorithmic complexity than previous attempts based on statistical regularities such as popular lossless compression schemes. The strategy behind BDM is to find small computer programs that produce the components of a larger, decomposed object. The set of short computer programs can then be artfully arranged in sequence so as to produce the original object. We show that the method provides efficient estimations of algorithmic complexity but that it performs like Shannon entropy when it loses accuracy. We estimate errors and study the behaviour of BDM for different boundary conditions, all of which are compared and assessed in detail. The measure may be adapted for use with more multi-dimensional objects than strings, objects such as arrays and tensors. To test the measure we demonstrate the power of CTM on low algorithmic-randomness objects that are assigned maximal entropy (e.g. π) but whose numerical approximations are closer to the theoretical low algorithmic-randomness expectation. We also test the measure on larger objects including dual, isomorphic and cospectral graphs for which we know that algorithmic randomness is low. We also release implementations of the methods in most major programming languages-Wolfram Language (Mathematica), Matlab, R, Perl, Python, Pascal, C++, and Haskell -and an online algorithmic complexity calculator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.