The plant U-box (PUB) protein family plays an important role in plant growth and development. The U-box gene family has been well studied in Arabidopsis thaliana, Brassica rapa, rice, etc., but there have been no systematic studies in Brassica oleracea. In this study, we performed genome-wide identification and evolutionary analysis of the U-box protein family of B. oleracea. Firstly, based on the Brassica database (BRAD) and the Bolbase database, 99 Brassica oleracea PUB genes were identified and divided into seven groups (I–VII). The BoPUB genes are unevenly distributed on the nine chromosomes of B. oleracea, and there are tandem repeat genes, leading to family expansion from the A. thaliana genome to the B. oleracea genome. The protein interaction network, GO annotation, and KEGG pathway enrichment analysis indicated that the biological processes and specific functions of the BoPUB genes may mainly involve abiotic stress. RNA-seq transcriptome data of different pollination times revealed spatiotemporal expression specificity of the BoPUB genes. The differential expression profile was consistent with the results of RT-qPCR analysis. Additionally, a large number of pollen-specific cis-acting elements were found in promoters of differentially expressed genes (DEG), which verified that these significantly differentially expressed genes after self-pollination (SP) were likely to participate in the self-incompatibility (SI) process, including gene encoding ARC1, a well-known downstream protein of SI in B. oleracea. Our study provides valuable information indicating that the BoPUB genes participates not only in the abiotic stress response, but are also involved in pollination.
In order to identify the functional domains which regulate the interaction between the self-incompatibility proteins armadillo repeat containing 1 (ARC1) and exocyst 70 A1 (Exo70A1) in Brassica oleracea, fragments containing selected motifs of ARC1 (ARC1210, ARC1246, ARC1279, ARC1354) and site-specific mutants with substitutions at possible interaction sites (ARC1354m, ARC1664m) were PCR amplified and inserted into pGADT7, while coding sequences from Exo70A1 (Exo70A185, Exo70A1) were subcloned into pGBKT7. The interactions between the protein products produced by these constructs were then analyzed utilizing a yeast two-hybrid system. Our data indicate that both ARC1210 and ARC1246 interact strongly with Exo70A185 and Exo70A1, while ARC1279, ARC1354, ARC1354m and ARC1664m exhibited a weak interaction, indicating that the recognition sites are located within the 210 N-terminal amino acids of ARC1 and the 85 N-terminal amino acids of Exo70A1. This was further verified by GST pull-down analysis. This supports a model in which the N-terminal leucine zipper of ARC1 and the first 85 N-terminal amino acids of Exo70A1 mediate the interaction between these two proteins. Bioinformatic and phylogenetic analysis demonstrated that these motifs were highly conserved across different species, indicating that the interaction characterized in B. oleracea may operate in a wide array of cultivars.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is not only involved in carbohydrate metabolism, but also plays an important role in stress resistance. However, it has not been reported in Brassica oleracea. In this study, we performed a genome-wide identification of BoGAPDH in B. oleracea and performed cloning and expression analysis of one of the differentially expressed genes, BoGAPC. A total of 16 members of the BoGAPDH family were identified in B. oleracea, which were conserved, distributed unevenly on chromosomes and had tandem repeat genes. Most of the genes were down-regulated during self-pollination, and the highest expression was found in stigmas and sepals. Different transcriptome data showed that BoGAPDH genes were differentially expressed under stress, which was consistent with the results of qRT-PCR. We cloned and analyzed the differentially expressed gene BoGAPC and found that it was in the down-regulated mode 1 h after self-pollination, and the expression was the highest in the stigma, which was consistent with the result of GUS staining. The promoter region of the gene not only has stress response elements and plant hormone response elements, but also has a variety of specific elements for regulating floral organ development. Subcellular localization indicates that the BoGAPC protein is located in the cytoplasm and belongs to the active protein in the cytoplasm. The results of prokaryotic expression showed that the size of the BoGAPC protein was about 37 kDa, which was consistent with the expected results, indicating that the protein was induced in prokaryotic cells. The results of yeast two-hybrid and GST pull-down showed that the SRK kinase domain interacted with the BoGAPC protein. The above results suggest that the BoGAPDH family of B. oleracea plays an important role in the process of plant stress resistance, and the BoGAPC gene may be involved in the process of self-incompatibility in B. oleracea, which may respond to SI by encoding proteins directly interacting with SRK.
Myzus persicae is a well known aphid pest, which can transport plant viruses to plants of the nightshade/potato family, namely the Solanaceae, and other food crops. Our aim was to explore the effects of imidacloprid combined with synergistic agents (Beichuang and Jiexiaoli) on Myzus persicae. Different concentrations of imidacloprid combined with synergistic agents were used to treat M. persicae. Biological activity of M. persicae was analyzed under indoor conditions, and the control efficiency of the admixture was determined through field experiments. The penetration rate of the admixture on tobacco leaf and M. persicae was analyzed, and the liquid surface tension and contact angle was measured. Imidacloprid combined with Beichuang and Jiexiaoli showed significant synergistic effects with high control efficacy. Beichuang and Jiexiaoli significantly improved the penetration of imidacloprid into the cuticle of tobacco leaves and the insect body wall. The surface tension and contact angles were abated by synergists. The combination of imidacloprid with Beichuang and Jiexiaoli showed a significant synergistic effect, which can be used for decreasing the dosage of imidacloprid and improving its long-term control efficacy.
Self-incompatibility (SI) is an important mating system to prevent inbreeding and promote outcrossing. ARC1 and Exo70A1 function as the downstream targets of the S-locus receptor kinase and play conservative roles in Brassica SI signaling. Based on the sequence homology, Exo70A1 is divided into four subdomains: leucine zipper (Leu are required for the interaction with Exo70A1, while the addition of ARM motif results in loss of the interaction with Exo70A1. Meanwhile, the N-terminal of Exo70A1 without any domains shows a weak interaction with ARC1, and the level of LacZ expression increases with addition of leucine zipper and reaches the maximum value with hypervariable region and SUMO modification motif, indicating that hypervariable region and SUMO modification motif of Exo70A1 172-275 is mainly responsible for the binding with ARC1, whereas pfamExo70 domain has little affinity for ARC1. Lys 181 located in the Exo70A1 hypervariable region may be the ubiquitination site mediating the interaction between ARC1 and Exo70A1. Therefore, both the leucine zipper with coiled-coil structure of ARC1 , and the hypervariable region and SUMO modification motif of Exo70A1 are the core interaction domains between ARC1 and Exo70A1. Any factors affecting these core domains would be the regulators of ARC1 mediating ubiquitin degradation in self-incompatible system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.