Abstract. In this paper, we investigate the notion of q-pseudoconvexity to discuss and describe some geometric characterizations of q-pseudoconvex domains Ω ⊂ C n . In particular, we establish that Ω is q-pseudoconvex, if and only if, for every boundary point, the Levi form of the boundary is semipositive on the intersection of the holomorphic tangent space to the boundary with any (n−q +1)-dimensional subspace E ⊂ C n . Furthermore, we prove that the Kiselman's minimum principal holds true for all q-pseudoconvex domains in C p ×C n such that each slice is a convex tube in C n .
We establish that a sequence (Xk)k∈N of analytic subsets of a domain Ω in Cn, purely dimensioned, can be released as the family of upper-level sets for the Lelong numbers of some positive closed current. This holds whenever the sequence (Xk)k∈N satisfies, for any compact subset L of Ω, the growth condition Σ k∈N Ck mes(Xk ∩ L) < ∞. More precisely, we built a positive closed current Θ of bidimension (p, p) on Ω, such that the generic Lelong number mXk of Θ along each Xk satisfies mXk = Ck. In particular, we prove the existence of a plurisubharmonic function v on Ω such that, each Xk is contained in the upper-level set ECk (ddcv)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.