BackgroundAntiepileptic drugs (AEDs) are effective medications available for epilepsy. However, many patients do not respond to this treatment and become resistant. Genetic polymorphisms may be involved in the variation of AEDs response. Therefore, we conducted an updated systematic review and a meta-analysis to investigate the contribution of the genetic profile on epilepsy drug resistance.MethodsWe proceeded to the selection of eligible studies related to the associations of polymorphisms with resistance to AEDs therapy in epilepsy, published from January 1980 until November 2016, using Pubmed and Cochrane Library databases. The association analysis was based on pooled odds ratios (ORs) and 95% confidence intervals (CIs).ResultsFrom 640 articles, we retained 13 articles to evaluate the relationship between ATP-binding cassette sub-family C member 1 (ABCB1) C3435T polymorphism and AEDs responsiveness in a total of 454 epileptic AEDs-resistant cases and 282 AEDs-responsive cases. We found a significant association with an OR of 1.877, 95% CI 1.213–2.905. Subanalysis by genotype model showed a more significant association between the recessive model of ABCB1 C3435T polymorphism (TT vs. CC) and the risk of AEDs resistance with an OR of 2.375, 95% CI 1.775–3.178 than in the dominant one (CC vs. TT) with an OR of 1.686, 95% CI 0.877–3.242.ConclusionOur results indicate that ABCB1 C3435T polymorphism, especially TT genotype, plays an important role in refractory epilepsy. As genetic screening of this genotype may be useful to predict AEDs response before starting the treatment, further investigations should validate the association.
Background Epilepsy is one of the most common neurological disorders with about 30% treatment failure rate. An interindividual variations in efficacy of antiepileptic drugs (AEDs) make the treatment of epilepsy challenging, which can be attributed to genetic factors such as ATP-Binding Cassette sub-family B, member1 (ABCB1) gene polymorphisms. Objective The main objective of the present study is to evaluate the association of ABCB1 C1236T, G2677T, and C3435T polymorphisms with treatment response among Tunisian epileptic patients. Materials and Methods One hundred epileptic patients, originated from north of Tunisia, were recruited and categorized into 50 drug-resistant and 50 drug-responsive patients treated with antiepileptic drugs (AEDs) as per the International League Against Epilepsy. DNA of patients was extracted and ABCB1 gene polymorphisms studied using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results The C1236T, G2677T, and C3435T polymorphisms were involved into AED resistance. Significant genotypic (C1236T TT (p ≤ 0.001); G2677T TT (p = 0.001); C3435T TT (p ≤ 0.001)) and allelic associations (C1236T T (3.650, p ≤ 0.001); G2677TT (1.801, p = 0.044); C3435T T (4.730, p ≤ 0.001)) with drug resistance epilepsy (DRE) were observed. A significant level of linkage disequilibrium (LD) was also noted between ABCB1 polymorphisms. Patients with the haplotypes CT and TT (C1236T-G2677T); GT, TC, and TT (G2677T-C3435T); CT and TT (C1236T-C3435T); CTT, TTC, TGT, and TTT (C1236T-G2677T-C3435T) were also significantly associated to AED resistance. Conclusions The response to antiepileptics seems to be modulated by TT genotypes, T alleles, and the predicted haplotypes for the tested SNPs in our population. Genetic analysis is a valuable tool for predicting treatment response and thus will contribute to personalized medicine for Tunisian epileptic patients.
The PLAN-associated phenotypes and the challenges of diagnosing the childhood-onset form are delineated, and a common North African founder mutation is identifed.
Introduction RNA polymerase III (Pol III)‐related leukodystrophies are a group of autosomal recessive neurodegenerative disorders caused by mutations in POLR3A and POLR3B. Recently a recessive mutation in POLR1C causative of Pol III‐related leukodystrophies was identified. Methods We report the case of a Tunisian girl of 14 years of age who was referred to our department for evaluation of progressive ataxia that began at the age of 5. Genetic diagnosis was performed by NGS and Sanger analysis. In silico predictions were performed using SIFT, PolyPhen‐2, and Mutation Taster. Results Neurological examination showed cerebellar and tetrapyramidal syndrome, mixed movement disorders with generalized dystonia and severe myoclonus leading to death at 25 years. Brain MRI scans showed diffuse hypomyelination associated with cerebellar atrophy. It also showed bilateral T2 hypointensity of the ventrolateral thalamus, part of the posterior limb of the internal capsule, the substantia nigra and the subthalamic nucleus. Next generation sequencing leukodystrophy panel including POLR3A and POLR3B was negative. Sanger sequencing of the coding regions of POLR1C revealed a novel homozygous mutation. Conclusion The clinical and imaging findings of patients with POLR1C hypomyelinating leukodystrophy are reviewed. Interestingly, severe myoclonic dystonia and T2 hypointensity of the substantia nigra and the subthalamic nucleus are not reported yet and could be helpful for the diagnosis of POLR1C hypomyelinating leukodystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.