In this thesis, we propose and implement a new hybrid approach using fractal analysis, statistical analysis and neural network computation to build a model for prediction the number of ischemia occurrence based on ECG recordings. The main advantage of the proposed approach over similar earlier related works is that first useful parameters from fractal analysis of the signal are extracted to build a model that includes both clinical characteristics and signal attributes. Statistical analysis such as binary logistic regression and multivariate linear regression are then used to further explore the relation of parameters in order to obtain a more accurate model. We show that the results compare well with those of earlier work and clearly indicate that the augmentation of the above mentioned approaches improves the prediction accuracy.
In this thesis, we propose and implement a new hybrid approach using fractal analysis, statistical analysis and neural network computation to build a model for prediction the number of ischemia occurrence based on ECG recordings. The main advantage of the proposed approach over similar earlier related works is that first useful parameters from fractal analysis of the signal are extracted to build a model that includes both clinical characteristics and signal attributes. Statistical analysis such as binary logistic regression and multivariate linear regression are then used to further explore the relation of parameters in order to obtain a more accurate model. We show that the results compare well with those of earlier work and clearly indicate that the augmentation of the above mentioned approaches improves the prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.