This paper aims to estimate the surface mesh size related discretization uncertainties using the γ-Reθ transition model combined with the SST k-ω turbulence model. For comparison, the present work employs an available experimental study performed with a 6:1 prolate spheroid. The grid convergence index (GCI) study is performed for axial force, surface skin friction, and pressure coefficients with three levels of meshes. The transition model estimates the axial force coefficients, approximately half of which are obtained using fully turbulent calculations with higher GCI values. The GCI values around the axial force coefficients for the level-2 mesh are less than 1% based on fully turbulent calculations. However, with the transition model, these values for the same mesh level increase to 10%. While the GCI values of surface pressure coefficients are very small based on both fully turbulent and transition model calculations, these coefficients show differences at the trailing part of the spheroid. Significant differences are also observed in the surface friction coefficients. While the model captures drastic changes in terms of transition in the surface friction coefficients at the suction side of the spheroid, such drastic change is not observed in fully turbulent calculations. On the other hand, there is no sign of any transition phenomenon at the pressure side, contrary to the observations of experimental measurements. The transition model is not able to estimate the transition front geometry correctly. The GCI values of the surface friction coefficients increase dramatically, up to 765% around the transition regions.
Aerodynamic parameters are among the most important parameters in flight performance analyses of air/sea vehicles. Free stream turbulence intensity has significant importance on aerodynamic parameters obtained with computational fluid dynamic analyses and wind tunnel tests measurements. In this study, the effect of free stream turbulence intensity on the transition locations of spheroid geometry using with the widely accepted local correlation transition model. The computations are performed at 6.5 x 106 Reynolds number with 0 and 5 degree angle of attacks. The computations at 5 degree angle of attack are compared with an available experimental study. The effect of free stream turbulence intensity is investigated with axial force coefficient, normal force coefficient, and surface friction coefficient distributions. It is seen that axial and normal force coefficients increase with increasing free stream turbulence intensity. The differences in force coefficients obtained with the free stream intensity range used in the study shall create noteworthy effects in flight performance analyses. When surface friction coefficients are investigated, the transition model estimates the transition locations earlier while free stream turbulence intensity increases as expected. However, the transition front geometry is obtained significantly different with respect to the experimental results.
Bu çalışmada, γ türbülans geçiş modelinin (çapraz akış etkisinin dahil edildiği ve edilmediği versiyonları kullanılarak) 6:1 küremsi geometri üzerinde düzensiz çözüm ağı kullanılarak 6.5 x 10-6 Reynolds sayısında ve 5o hücum açısında başarım değerlendirmesi amaçlanmaktadır. γ türbülans geçiş modelinin performans değerlendirmesi, SST k-ω türbülans modeli, en popüler türbülans geçiş modeli olan γ-〖Re〗_θ türbülans geçiş modeli ve halihazırda mevcut deneysel veri sonuçları kullanılarak yapılmıştır. Türbülans geçiş modelinin etkisi eksenel kuvvet katsayısı, normal kuvvet katsayısı, yüzey basınç katsayısı ve yüzey sürtünme katsayısı kullanılarak gösterilmiştir. Eksenel kuvvet ve normal kuvvet katsayıları etrafındaki ayrıklaştırma hata bandı “Grid Convergence Index” (GCI) metodu kullanılarak elde edilmiştir. Türbülans geçiş modelleri kuvvet katsayılarını, akışın tamamıyla türbülanslı olması kabulüyle yapılan analizlere göre daha büyük GCI değerleriyle %58 daha az tahmin etmiştir. Türbülans geçiş modelleri yüzey basınç katsayılarında fazla değişiklik yaratmazken, yüzey sürtünme katsaylarında önemli farklılıklar görülmüştür. Türbülans geçiş modelleri küremsi geometrinin üst yüzeyinde yüzey sürtünme katsayıları açısından önemli farklılıklar yakalasa da bu kuvvetli değişiklikler tamamıyla türbülanslı akış analizlerinde gözlemlenmemektedir. Diğer yandan, deneysel sonuçların tersine, analizlerde küremsi geometrinin alt yüzeyinde türbülans geçişine dair hiçbir işaret görülmemektedir. Sonuç olarak, geçiş modelleri türbülans geçiş bölgesi geometrisini doğru tahmin edememektedirler. Bunun yanı sıra, γ türbülans geçiş modelinin, γ-〖Re〗_θ türbülans geçiş modeline göre yüzey çözüm ağı büyüklüğüne daha hassas olduğu tespit edilmiştir. γ türbülans geçiş modelinin bir diğer dezavantajı da çözümleme zamanıdır. γ türbülans geçiş modeli, γ-〖Re〗_θ geçiş modeline göre daha basit olmasına rağmen, kuvvet katsayılarında daha yavaş iterasyon yakınsama oranına sebebiyle hesaplaması yaklaşık 3.8 kat daha fazla zaman almıştır. Çapraz akış etkisinin γ türbülans geçiş modeline dahil edilmesi, geçiş bölge geometrisi ve çözümleme zamanı açısından sonuçları fazla değiştirmemiştir. Bu çalışmada sunulan sonuçlar, geçiş bölgesini doğru tahmin etmek amacıyla gelecekte yapılacak çalışmalarda ve geçiş modellerinin hata tahminlerinin yapılmasında kullanılabilecektir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.