BACKGROUND: In recent years the relationship between ambient air temperature and the prevalence of viral infection has been under investigation. OBJECTIVE: The study was aimed at providing the statistical and machine learning-based analysis to investigate the influence of climatic factors on frequency of COVID-19 confirmed cases in Iran. METHOD: The data of confirmed cases of COVID-19 and some climatic factors related to 31 provinces of Iran between 04/03/2020 and 05/05/2020 was gathered from official resources. In order to investigate the important climatic factors on the frequency of confirmed cases of COVID-19 in all studied cities, a model based on an artificial neural network (ANN) was developed. RESULTS: The proposed ANN model showed accuracy rates of 87.25%and 86.4%in the training and testing stage, respectively, for classification of COVID-19 confirmed cases. The results showed that in the city of Ahvaz, despite the increase in temperature, the coefficient of determination R2 has been increasing. CONCLUSION: This study clearly showed that, with increasing outdoor temperature, the use of air conditioning systems to set a comfort zone temperature is unavoidable. Thus, the number of positive cases of COVID-19 increases. Also, this study shows the role of closed-air cycle condition in the indoor environment of tropical cities.
Adhering to a healthy diet plays an essential role in preventing many nutrition-related diseases, such as obesity, diabetes, high blood pressure, and other cardiovascular diseases. This study aimed to predict adherence to the prescribed diets using a hybrid model of artificial neural networks (ANNs) and the genetic algorithm (GA). In this study, 26 factors affecting diet adherence were modeled using ANN and GA(ANGA). A dataset of 1528 patients, including 1116 females and 412 males, referred to a private clinic was applied. SPSS Ver.25 and MATLAB toolbox 2017 were employed to make the model and analyze the data. The results showed that the accuracy of the proposed ANN and ANGA models for predicting diet adherence was 93.22% and 93.51%, respectively. Also, the Pearson coefficient showed a significant relationship among the factors. The developed model showed the proper performance for predicting adherence to the diet. Moreover, the most effective factors were selected using GA. Some important factors that affect diet adherence include the duration of the marriage, the reason for referring to the clinic, weight, body mass index (BMI), weight satisfaction, lunch and dinner times, and sleep time. Therefore, applying the proposed model can help dietitians identify people who need more support to adhere to the diet.
The relation between ambient air temperature and prevalence of viral infection has been under investigation in recent years. The study was aimed at providing the statistical and machine learning-based analysis to investigate the influence of climatic factors on frequency of COVID-19 confirmed cases in Iran. The data of confirmed cases of COVID-19 and some climatic factors related to 31 provinces of Iran during 04/03/2020 to 05/05/2020 was gathered from the official resources. In order to investigate the important climatic factors on the frequency of confirmed cases of COVID-19 in all studied cities, a model based on an artificial neural network (ANN) was developed. The proposed ANN model showed accuracy rates of 87.25% and 86.4% in the training and testing stage, respectively, for classification of COVID-19 confirmed cases. The results showed that in the city of Ahvaz, despite the increase in temperature, the coefficient of determination R2 has been increasing. This study clearly showed that, with increasing outdoor temperature, the use of air conditioning systems to set a comfort zone temperature is unavoidable; thus, the number of positive cases of COVID-19 increases. Also, this study shows the role of closed-air cycle condition in the indoor environment of tropical cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.