Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.
This is the fi rst evidence on successful Agrobacterium rhizogenes-mediated genetic transformation of two species from the genus Hypericum, H. tomentosum L. and H. tetrapterum Fries. Hairy root cultures were induced from root segments of both Hypericum species by two agropine wild-type strains of A. rhizogenes, ATCC 15834 and A4. The transgenic character of the hairy root cultures was proved by PCR amplifi cation of the rolABCD genes. In some H. tetrapterum transgenic lines aux genes were detected as well.
The extent of phenotypic variation of St. John’s wort (Hypericum perforatum L.) plants transformed with wild agropine ATCC 15834 Agrobacterium rhizogenes plasmid was evaluated with respect to the number of rol genes integrations. The transfer of TL-DNA to plant explants during each transformation event was incomplete with different rolA, rolB, and rolC copy numbers. Along with typical features representing the hairy root syndrome, an altered size, number and density of dark and translucent glands, changes in ability to synthesize secondary metabolites, and reduced fertility were observed. The highest copy number of transferred rol genes resulted in weak expression of transgenic character and comparable quantitative parameters with the controls. Only 1 out of 11 transgenic clones was able to produce seed progeny and not more than 4 out of its 35 offsprings were positive for rolC gene integration. Sterility of the clones was due to retarded development of both gametophytes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.