ELI-Beamlines (ELI-BL), one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP), plasma physics and ultra-high intensity (UHI) (1022W/cm2) laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform) installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM) and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF). Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.
We present and analyze exact gyraton and nonexpanding gravitational wave solutions of algebraic type II on backgrounds which are a direct-product of two 2-spaces of constant curvature, or more general type D spacetimes. This family of electro-vacuum background spacetimes contains the Nariai, anti-Nariai and Plebanski-Hacyan universes, conformally flat Bertotti-Robinson and Minkowski spaces. The gyraton solutions are given in a simple Kundt metric form. They belong to the recently discussed class of spacetimes with constant scalar invariants (CSI) of the curvature tensor. We show that the Einstein equations reduce to a set of linear equations on the transverse 2-space which can be explicitly solved using the Green functions.Comment: 22 pages, no figures, contains some material not included in the journal versio
The interaction of two counter-propagating electromagnetic waves in a vacuum is analyzed within the framework of the Heisenberg-Euler formalism in quantum electrodynamics. The nonlinear electromagnetic wave in the quantum vacuum is characterized by wave steepening, subsequent generation of high order harmonics and electromagnetic shock wave formation with electron-positron pair generation at the shock wave front.
We present and analyze exact solutions of the Einstein-Maxwell equations in higher dimensions which form a large subclass of the Kundt family of spacetimes. We assume that the cosmological constant may be nonvanishing, and the matter consists of a background aligned electromagnetic field and an additional pure radiation (gyratonic) field with a spin. We show that the field equations reduce to a set of linear equations on the transverse space which can be solved exactly and expressed in terms of the Green functions. We thus find explicit exact gyratonic gravitational and electromagnetic fields created by a radiation beam of null matter with arbitrary profiles of energy density and angular momenta. In the absence of the gyratonic matter we obtain pure nonexpanding higher-dimensional gravitational waves. In particular, we investigate gyratons and waves propagating on backgrounds which are a direct-product of 2-spaces of constant curvature. Such type D or 0 background spacetimes generalize 4-dimensional Nariai, anti-Nariai and Plebanski-Hacyan universes, and conformally flat Bertotti-Robinson and Minkowski spaces. These spacetimes belong to a wider class of spaces which admit the Kahler structure related to the background magnetic field. The obtained wave and gyraton solutions are also members of the recently discussed class of spacetimes with constant scalar invariants (CSI) of the curvature tensor.Comment: 18 pages, no figure
Abstract. Asymptotic behaviour of gravitational and electromagnetic fields of exact type D solutions from the large Plebański-Demiański family of black hole spacetimes is analyzed. The amplitude and directional structure of radiation is evaluated in cases when the cosmological constant is non-vanishing, so that the conformal infinities have either de Sitter-like or anti-de Sitter-like character. In particular, explicit relations between the parameters that characterize the sources (that is their mass, electric and magnetic charges, NUT parameter, rotational parameter, and acceleration) and properties of the radiation generated by them are presented. The results further elucidate the physical interpretation of these solutions and may help to understand radiative characteristics of more general spacetimes than those that are asymptotically flat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.