Objective: A novel angle-tuned ring coil is proposed for improving the depth-spread performance of Transcranial Magnetic Stimulation (TMS) coils and serve as the building blocks for high-performance composite coils and multisite TMS systems Approach: Improving depth-spread performance by reducing field divergence through creating a more elliptical emitted field distribution from the coil. To accomplish that, instead of enriching the Fourier components along the planarized (x-y) directions, which requires different arrays to occupy large brain surface areas, we worked along the radial (z) direction by using tilted coil angles and stacking coil numbers to reduce the divergence of the emitted near field without occupying large head surface areas. The emitted electric field distributions were theoretically simulated in spherical and real human head models to analyze the depth-spread performance of proposed coils and compare with existing figure-8 coils. The results were then experimentally validated with field probes and in-vivo animal tests. Main Results: The proposed "angle-tuning" concept improves the depth-spread performance of individual coils with a significantly smaller footprint than existing and proposed coils. For composite structures, using the proposed coils as basic building blocks simplifies the design and manufacturing process and helps accomplish a leading depth-spread performance. In addition, the footprint of the proposed system is intrinsically small, making them suitable for multisite stimulations of inter and intra-hemispheric brain regions with an improved spread and less electric field divergence. Significance: Few brain functions are operated by isolated single brain regions but rather by coordinated networks involving multiple brain regions. Simultaneous or sequential multisite stimulations may provide tools for mechanistic studies of brain functions and the treatment of neuropsychiatric disorders. The proposed AT coil goes beyond the traditional depth-spread tradeoff rule of TMS coils, which provides the possibility of building new composite structures and new multisite TMS tools.
In recent years, there is an increasing interest in noninvasive treatments for neurological disorders like Alzheimer and Depression. Transcranial magnetic stimulation (TMS) is one of the most effective methods used for this purpose. The performance of TMS highly depends on the coils used for the generation of magnetic field and induced electric field particularly their designs affecting depth and focality tradeoff characteristics. Among a variety of proposed and used TMS coil designs, circular coils are commonly used both in research and medical and clinical applications. In current study, we focus on changing the outer and inner sizes (diameter) and winding turns of ring coils and try to reach deeper brain regions without significant field strength decay. The induced electric field and the decay rate of the generated field with depth were studied with finite element method calculations. The results of the performed simulations indicate that larger diameter coils have a larger equivalent field emission aperture and produce larger footprint of induced electric field initially. However, their emission solid angles are smaller and, as a result, the field divergence or the decay rates of the generated field with depth are smaller as well, which give them a good potential to perform better for deep brain stimulation compared with that of smaller coil.
Objective and Impact Statement. There is a need to develop rodent coils capable of targeted brain stimulation for treating neuropsychiatric disorders and understanding brain mechanisms. We describe a novel rodent coil design to improve the focality for targeted stimulations in small rodent brains. Introduction. Transcranial magnetic stimulation (TMS) is becoming increasingly important for treating neuropsychiatric disorders and understanding brain mechanisms. Preclinical studies permit invasive manipulations and are essential for the mechanistic understanding of TMS effects and explorations of therapeutic outcomes in disease models. However, existing TMS tools lack focality for targeted stimulations. Notably, there has been limited fundamental research on developing coils capable of focal stimulation at deep brain regions on small animals like rodents. Methods. In this study, ferromagnetic cores are added to a novel angle-tuned coil design to enhance the coil performance regarding penetration depth and focality. Numerical simulations and experimental electric field measurements were conducted to optimize the coil design. Results. The proposed coil system demonstrated a significantly smaller stimulation spot size and enhanced electric field decay rate in comparison to existing coils. Adding the ferromagnetic core reduces the energy requirements up to 60% for rodent brain stimulation. The simulated results are validated with experimental measurements and demonstration of suprathreshold rodent limb excitation through targeted motor cortex activation. Conclusion. The newly developed coils are suitable tools for focal stimulations of the rodent brain due to their smaller stimulation spot size and improved electric field decay rate.
ZnSe has been a great choice for the rare-earth and transition metal doping to develop lasers. It is an excellent material for variety of optical applications due to wide transparency range, good fabricability and very low optical absorption similar to other selenides. NASA Marshall Space Flight Center has developed large crystals using physical vapor deposition (PVD) doped with transition metals for lasing. GaAs based quasi-phase matched structures have a lot of limitations including difficulty of frequency conversion from available high-power lasers. We are developing Si-and GaAs-based templates and using microfabrication process to deposit ZnSe using physical vapor transport (PVT) method. Experimental results of the fabrication of templates and growth of ZnSe on templates will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.