We theoretically investigate pumping of phonons by the dynamics of a magnetic film into a nonmagnetic contact. The enhanced damping due to the loss of energy and angular momentum shows interference patterns as a function of the resonance frequency and magnetic film thickness that cannot be described by viscous ("Gilbert") damping. The phonon pumping depends on the magnetization direction as well as geometrical and material parameters and is observable, e.g., in thin films of yttrium iron garnet on a thick dielectric substrate.
We model the injection of elastic waves into a ferromagnetic film (F) by a nonmagnetic transducer (N). We compare the configurations in which the magnetization is normal and parallel to the wave propagation. The lack of axial symmetry in the former results in the emergence of evanescent interface states. We compute the energy-flux transmission across the N|F interface and sound-induced magnetization dynamics in the ferromagnet. We predict efficient acoustically induced pumping of spin current into a metal contact attached to F.
We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain nanoparticles. Magnetic anisotropy generates low-frequency satellite peaks in the microwave absorption spectrum and a blueshift of the ferromagnetic resonance (FMR) frequency. The low-frequency resonances are very sharp with maxima exceeding that of the FMR, because their magnetic and mechanical precessions are locked, thereby suppressing the effective Gilbert damping. Magnetic nanoparticles can operate as nearly ideal motors that convert electromagnetic into mechanical energy. The Barnett damping term is essential for obtaining physically meaningful results.
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.