Select persulfate activation processes were demonstrated to initiate oxidation not reliant on sulfate radicals, although the underlying mechanism has yet to be identified. This study explored singlet oxygenation and mediated electron transfer as plausible nonradical mechanisms for organic degradation by carbon nanotube (CNT)-activated peroxymonosulfate (PMS). The degradation of furfuryl alcohol (FFA) as a singlet oxygen (1O2) indicator and the kinetic retardation of FFA oxidation in the presence of l-histidine and azide as 1O2 quenchers apparently supported a role of 1O2 in the CNT/PMS system. However, the 1O2 scavenging effect was ascribed to a rapid PMS depletion by l-histidine and azide. A comparison of CNT/PMS and photoexcited Rose Bengal (RB) excluded the possibility of singlet oxygenation during heterogeneous persulfate activation. In contrast to the case of excited RB, solvent exchange (H2O to D2O) did not enhance FFA degradation by CNT/PMS and the pH- and substrate-dependent reactivity of CNT/PMS did not reflect the selective nature of 1O2. Alternatively, concomitant PMS reduction and trichlorophenol oxidation were achieved when PMS and trichlorophenol were physically separated in two chambers using a conductive vertically aligned CNT membrane. This result suggested that CNT-mediated electron transfer from organics to persulfate was primarily responsible for the nonradical degradative route.
Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression.
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Ammonia-oxidizing bacteria (AOB) have long been considered key to the removal of nitrogen in activated sludge bioreactors. Culture-independent molecular analyses have established that AOB lineages in bioreactors are dynamic, but the underlying operational or environmental factors are unclear. Furthermore, the contribution of ammonia-oxidizing archaea (AOA) to nitrogen removal in bioreactors has not been studied. To this end, we investigated the abundance of AOA and AOB as well as correlations between dynamics in AOB lineages and operational parameters at a municipal wastewater treatment plant sampled weekly over a 1 year period. Quantitative PCR measurements of bacterial and archaeal ammonia monooxygenase subunit A (amoA) genes revealed that the bacterial homologue predominated by at least three orders of magnitude in all samples. Archaeal amoA was only detectable in approximately 15% of these samples. Using terminal restriction fragment length polymorphism analysis, we monitored AOB lineages based on amoA genes. The Nitrosomonas europaea lineage and a novel Nitrosomonas-like cluster were the dominant AOB signatures, with a Nitrosospira lineage present at lower relative abundance. These lineages exhibited strong temporal oscillations, with one becoming sequentially dominant over the other. Using non-metric multidimensional scaling and redundancy analyses, we tested correlations between terminal restriction fragment length polymorphism profiles and 20 operational and environmental parameters. The redundancy analyses indicated that the dynamics of AOB lineages correlated most strongly with temperature, dissolved oxygen and influent nitrite and chromium. The Nitrosospira lineage signal had a strong negative correlation to dissolved oxygen and temperature, while the Nitrosomonas-like (negative correlations) and N. europaea lineages (positive correlations) were inversely linked (relative to one another) to influent nitrite and chromium. Overall, this study suggests that AOA may be minor contributors to ammonia oxidation in highly aerated activated sludge, and provides insight into parameters controlling the diversity and dominance of AOB lineages within bioreactors during periods of stable nitrification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.