A well-defined styrenic block copolymer was prepared through controlled/"living" radical polymerization technique and evaluated as a polymeric surface modifier for multiwalled carbon nanotube (MWCNT) in R-terpineol-based paste. First, poly(maleic anhydride-co-p-acetoxystyrene)-block-poly(p-acetoxystyrene) copolymer was prepared through a nitroxide-mediated polymerization (NMP) technique in an efficient "onepot" reaction. The copolymer was then functionalized with pyrene through an imidization reaction (SPM). Finally, p-acetoxystyrene units were converted to p-hydroxystyrene units through hydrolysis, affording pyrenefunctionalized poly(maleic acid-co-p-hydroxystyrene)-block-poly(p-hydroxystyrene) (HSPM). Pyrene units in one block afforded efficient attachment points to the surface of MWCNT through π-π interaction, while poly(p-hydroxystyrene) or poly(p-acetoxystyrene) tails afforded enhanced affinities with R-terpineol, as predicted by Hansen solubility parameter theory. Fabrications of electrodes through screen printing procedures employing MWCNT/HSPM or MWCNT/SPM pastes were facilitated through the surface modification of MWCNTs with the block copolymers, as evidenced by low viscosity, more homogeneous and smooth pastes, homogeneous/uniform MWCNT coatings, and low sheet resistance of the electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.