Transparent electrodes that can remain electrically conductive and stable under large mechanical deformations are highly desirable for applications in flexible and wearable electronics. This paper describes a comprehensive study of the electrical, optical, and mechanical properties of hybrid nanostructures based on two-dimensional graphene and networks of one-dimensional metal nanowires, and their use as transparent and stretchable electrodes. Low sheet resistance (33 Ω/sq) with high transmittance (94% in visible range), robust stability against electric breakdown and oxidation, and superb flexibility (27% in bending strain) and stretchability (100% in tensile strain) are observed, and these multiple functionalities of the hybrid structures suggest a future promise for next generation electronics. The use of hybrid electrodes to fabricate oxide semiconductor transistors and single-pixel displays integrated on wearable soft contact lenses with in vivo tests are demonstrated.
Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects.
Carbocyclic arabinofuranosyladenine (cyclaradine), a novel nucleoside analog with such desired features as hydrolytic and enzymatic stability, adenosine deaminase resistance, and low systemic toxicity, inhibited the replication of herpes simplex virus types 1 and 2. The 5'-methoxyacetate prodrug form exhibited significant efficacy in the topical treatment of genital infections by herpes simplex virus type 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.