Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS2) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS2 by substitutional niobium (Nb) doping, leading to a degenerate hole density of ∼ 3 × 10(19) cm(-3). Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS2 by replacing the Mo cations in the host lattice. van der Waals p-n homojunctions based on vertically stacked MoS2 layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS2. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.
Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materials in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10−3 cm2 V−1) derives mainly from the record long hole carrier lifetime (over 25 μs). The easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.
Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.
The role of grain boundaries on oxygen surface exchange in an oxide ion conductor is reported. Atomic‐scale characterization of the microstructure and chemical composition near the grain boundaries of gadolinia‐doped ceria (GDC) thin films show the segregation of dopants and oxygen vacancies along the grain boundaries using the energy dispersive spectroscopy in scanning transmission electron microscopy (STEM‐EDS). Kelvin probe microscopy is employed to verify the charge distribution near grain boundaries and shows that the grain boundary is positively charged, indicating a high concentration of oxygen vacancies. AC impedance spectroscopy on polycrystalline GDC membranes with thin interfacial layers with different grain boundary densities at the cathodes demonstrated that the cells with higher grain boundary density result in lower electrode impedance and higher exchange current density. These experimental evidences clearly show that grain boundaries on the surface provide preferential reaction sites for facilitated oxygen incorporation into the GDC electrolyte.
Quantum dots provide unique advantages in the design of novel optoelectronic devices owing to the ability to tune their properties as a function of size. Here we demonstrate a new technique for fabrication of quantum dots during the nucleation stage of atomic layer deposition (ALD) of PbS. Islands with sub-10 nm diameters were observed during the initial ALD cycles by transmission electron microscopy, and in situ observations of the coalescence and sublimation behavior of these islands show the possibility of further modifying the size and density of dots by annealing. The ALD process can be used to cover high-aspect-ratio nanostructures, as demonstrated by the uniform coating of a Si nanowire array with a single layer of PbS quantum dots. Photoluminescence measurements on the quantum dot/nanowire composites show a blue shift when the number of ALD cycles is decreased, suggesting a route to fabricate unique three-dimensional nanostructured devices such as solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.