Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s)were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 >LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitorY-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.
Cyclooxygenase-2 (COX-2) is a major contributor to the elevation of spinal prostaglandin E2, which augments the processing of nociceptive stimuli following peripheral inflammation, and dynorphin has been shown to have an important role in acute and chronic pain states. Moreover, the transcription factor, nuclear factor-kappa B (NF-kB), regulates the expressions of both COX-2 and dynorphin. To elucidate the role of spinal NF-kB in the induction of inflammatory pain hypersensitivity, we examined whether activated NF-kB affects pain behavior and the expressions of the mRNAs of COX-2 and prodynorphin following peripheral inflammation. Intrathecal pretreatment with different NF-kB inhibitors, namely, NF-kB decoy or pyrrolidine dithiocarbamate, significantly reduced mechanical allodynia and thermal hyperalgesia following unilateral hindpaw inflammation evoked by complete Freund's adjuvant (CFA). These NF-kB inhibitors also suppressed the activation of spinal NF-kB and the subsequent remarkable elevation of spinal COX-2 mRNA, but not that of prodynorphin mRNA. In addition, the activation of spinal NF-kB following CFA injection was inhibited by intrathecal pretreatments with interleukin-1 beta receptor antagonist or caspase-1 inhibitor. In view of the fact that interleukin-1 beta (IL-1 beta) is the major inducer of spinal COX-2 upregulation following CFA injection, our results suggest that IL-1 beta-induced spinal COX-2 upregulation and pain hypersensitivity following peripheral inflammation are mediated through the activation of the NF-kB-associated pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.