A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in structure borne road noise performance. In order to improve structure borne noise, it is required to lower the 1 st peak frequency of force transmissibility. This paper presents an application of finite element analysis modeling along with experimental verification to predict the force transmissibility of tire and wheel assembly. The results of finite element analysis for force transmissibility are shown to be in good agreement with the results from the indoor test. In order to improve structure borne noise, it is required to lower the 1 st peak frequency of force transmissibility. And, the effect of the tire design parameters such as the density and modulus of a rubber and the cord stiffness on the force transmissibility is discussed. It is found that the prediction of the force transmissibility model using finite element analysis will be useful for the improvement of the road noise performance of passenger car tire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.