The nucleotide sequence of chicken Mx cDNA was reported earlier using the White Leghorn breed in Germany, but it showed no enhanced resistance to viruses. In this study, the nucleotide sequences of chicken Mx cDNA were determined in many breeds. A total of 25 nucleotide substitutions, of which 14 were deduced to cause amino acid exchanges, were detected, suggesting that the chicken Mx gene is very polymorphic. Transfected cell clones expressing chicken Mx mRNA were established after the Mx cDNA was constructed with an expression vector and introduced into mouse 3T3 cells, and the Mx genes from some breeds were demonstrated to confer positive antiviral responses to influenza virus and vesicular stomatitis virus. On the basis of the comparison among the antiviral activities associated with many Mx variations, a specific amino acid substitution at position 631 (Ser to Asn) was considered to determine the antivirally positive or negative Mx gene. Thus, a single amino acid substitution influences the antiviral activity of Mx in domesticated chickens
Normal murine bone marrow cells were transduced with a retroviral vector to overexpress and release human acid sphingomyelinase (ASM). The transduced cells were then transplanted intravenously into 3-day-old, irradiated ASM-deficient mice, a model of human Niemann-Pick disease (NPD). At 4 weeks, engrafted mice received intracerebral injections of mesenchymal stem cells obtained from the original, transduced bone marrow. By 16 weeks, most of the treated NPD mice had near-normal levels of ASM activity in their tissues, including the brain; dramatically improved histology; and marked reductions in sphingomyelin. Cerebellar function also was normal, and the number of Purkinje cells was > 80% of normal. Remarkably, in certain regions of the cerebellum many of the surviving Purkinje cells expressed human ASM RNA, suggesting that either they were donor-derived or that the transplanted bone marrow cells had fused with existing Purkinje cells. However, despite these positive results, by 24 weeks the ASM activities were dramatically reduced and cerebellar function began to decline, coincident with the detection of anti-human ASM antibodies in the plasma. We conclude that this gene therapy procedure might be useful in Type A NPD and other neurological lysosomal storage disorders, particularly since it is an approach that could be beneficial for both the neurological and the visceral organ features of these diseases.
ABSTRACT. Polysaccharides isolated from fungi, Phellinus spp. is well-known material with anti-tumor and anti-inflammatory properties. We have assessed the adhesion-and abscess-reducing capacity of carboxymethylcellulose (CMC) and polysaccharides from Phellinus spp. combination in a rat peritonitis model. In 72 Sprague-Dawley rats, experimental peritonitis was induced by means of the ce cal ligation and puncture model (CLP). After 24 hr, the abdomen was reopened and the ligated cecum was resected. Peritoneal fluid samples were taken for microbiological examination. Rats were randomly assigned to 6 groups: ringer lactate solution (RL group), polysaccharides from Phellinus gilvus (PG group) and Phellinus linteus (PL group), carboxymethylcellulose (CMC group), and their combinations (PG+CMC and PL+CMC groups). Adhesions and abscesses were noted at day 7 after CLP. RT-PCR assay for urokinase-type plasminogen activator (uPA), its cellular receptor (uPAR), and tumor necrosis factor (TNF)-α was performed to assess the cecal tissue. Microbiological examination showed polymicrobial bacterial peritonitis. Adhesion formation was significantly reduced in PG+CMC and PL+CMC groups (P<0.05). The incidence of abscesses was reduced in all treated groups except the RL group (P<0.05). uPA, uPAR, and TNF-α mRNA were highly expressed in the PG+CMC and PL+CMC groups, as compared to the RL group. We concluded that the combination of polysaccharides and CMC had significant adhesion-and abscess-reducing effects compared with their single treatment and the effects may act by modifying the fibrinolytic capacity of uPA, uPAR and TNF-α produced from activated macrophages in a rat peritonitis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.